

MIMIZUKUの開発進捗と最新スペック ~Current status and specifications of MIMIZUKU~

Takafumi Kamizuka (IoA/UT) MIMIZUKU and TAO group

MIMIZUKU Science Workshop @ IoA (2013/05/24)

TAO Project

The university of Tokyo Atacama Obervatory

Next-gen. Observatory of UT (P.I.: Y. Yoshii)

- 6.5-m infrared telescope
- 1st-gen. instruments
 NIR: SWIMS, MIR: MIMIZUKU
- 40%-time for Japanese community

TAO Site

 Summit of Co. Chajnantor in the Atacama desert, Chile (5640m alt.)
 High altitude + Dry climate
 → Low PWV (Precipitable Water Vapor)
 0.38mm (10%-ile)
 → Ideal site for infrared astronomy

Atmospheric Windows

Red : VLT	@ 2600m alt.,	PWV=2.0mm
Black : TAO	@ 5640m alt.,	PWV=0.5mm

MAX38 and ANIR on miniTAO

miniTAO Telescope

- 1-m pilot telescope for TAO
- Site evaluation
 - Scientific capability
 - Operation stability

MAX38 – Mid-infrared Astronomical eXplorer –

- Mid-infrared Imager (λ: 3—38µm)
- First Light : 2009/11

ANIR – Atacama Near InfraRed camera –

- Near-infrared Imager (λ: 1.0—2.1µm)
- First Light : 2009/6

miniTAO Telescope

MAX38 and ANIR on miniTAO Telescope

PWV Estimation

PWV estimated by infrared observations

New windows are stably available

Scientific Results of 30-micron Observations

First high-resolution 30-micron images of dying stars → New insights of dust formation

Luminous Blue Variable: η Car (Nakamura D. Thesis)

Dust-formation rate \rightarrow 7x10⁻⁵M_{\odot}/yr Greater than conventional estimation by 10³ !! Planetary Nebula: Mz3 (Asano in prep.)

Dust in central core $\rightarrow 2x10^{-3}M_{\odot}$ Greater than conventional estimation by 10^3 !!

MIMIZUKU

Mid-Infrared Multi-field Imager for gaZing at the UnKnown Universe

A next-gen. MIR Instrument

- Wide band coverage (λ =2-38 μ m)
- High spatial resolution
- 2-beam simultaneous observation
 - Precise photometry / spectroscopy

Schedule

- Development —2014
- Obs. @ Subaru 2015B—2017
- Obs. @ TAO

2015B—2017 2018—

MIMIZUKU (2m x 2m x 2m; 2.3t)

Wavelength Coverage

AGB

$2-38 \ \mu m$ covered by 1 instrument

Spatial Resolution

Highest at 30-micron band for a few decades

Spatial resolution of MIR instruments

Sensitivity

Various kind objects are observable

Estimated sensitivity compared with spectra of various kind objects

Field Stacker

Equipped on top of MIMIZUKU
Picks up 2 fields
Combines them onto one detector
→ Target and Reference object simultaneously observed
→ Atm. variation canceled
→ Precise photometry / spectroscopy

Powerful tool for Long-term monitoring Q- and 30-um band spectroscopy

Specifications (prev.)

		NIR ch	MIR-S ch	MIR-L ch
Wavelen	gth	2—5.6µm	6—26µm	24—38µm
Detector		InSb Alladin II 1024x1024	Si:As AQUARIUS 1024x1024	Si:Sb DRS HF-128 128x128 (Opt.: 1024x1024)
Pixel Scal	е	0.11"/pix	0.11"/pix	0.44"/pix
Field of View	w/o FS	2'x2'	2'x2'	56"x56"
	w/ FS	1'x2'x2fields	1'x2'x2fields	28"x56"x2fields
Imaging F	lters	K, Ľ, M (J, H option)	Med-band filters Narrow-band filters	Med-band filters (Δλ~3μm)
Spectroscopy		2.8—5.5μm R~180	7.5—13.5μm R~230 16.5—25.5μm R~160	26—38µm R~60 (option)
Slit		0.6"x60"	0.3"/0.6" x 60"	1.2″x50″

Specifications (TAO)

		NIR ch	MIR-S ch	MIR-L ch
Waveleng	gth	2—5.6 <mark>(?)</mark> μm	6—26µm	24—38µm
Detector		H2RG 5um-cut 1024x1024	Si:As AQUARIUS 1024x1024	Si:Sb DRS HF-128 128x128
Pixel Scal	e	0.07"/pix	0.11"/pix	0.18"/pix
Field of View	w/o FS	1.2'x1.2'	2'x2'	23"x23"
	w/ FS	0.6'x1.2'x2fields	1'x2'x2fields	23"x11"x2fields
Imaging F	ilters	K, Ľ, M (J, H option)	Med-band filters Narrow-band filters	Med-band filters (Δλ~3μm)
Spectroscopy		2.8—5.5 <mark>(?)</mark> μm R~180	7.5—13.5μm R~230 16.5—25.5μm R~160	26—38µm R~60 (option)
Slit		0.6"x60"	0.3"/0.6" x 60"	1.2″x50″

Specifications (Subaru)

		NIR ch	MIR-S ch	MIR-L ch
Waveleng	gth	2—5.6(?)µm	6—26µm	24—38µm
Detector		H2RG 5um-cut 1024x1024	Si:As AQUARIUS 1024x1024	Si:Sb DRS HF-128 128x128
Pixel Scal	e	0.07"/pix	0.11"/pix	0.18"/pix
Field of View	w/o FS	1.2'x1.2'	2'x2'	23"x23"
	w/ FS	0.6'x1.2'x2fields	1'x2'x2fields	23"x11"x2fields
Imaging F	ilters	K, Ľ, M (J, H option)	Med-band filters Narrow-band filters	Med-band filters (Δλ~3μm)
Spectroscopy		2.8—5.5(?)μm R~180	7.5—13.5μm R~230 16.5—25.5μm R~160	26—38µm R~60 (option)
Slit		0.6"x60"	0.3"/0.6" x 60"	1.2"x50"

Science Case

Origin of Terrestrial Material from dying stars to aborning earths

From dying stars to aborning earths

Searching Iron Grains

Where are iron grains in the universe?

IR cont. of AGB star can be emission of iron or water vapor.

Separate them by monitoring NIR water bands and IR cont., and investigate iron existence.

Depletion pattern of ζ Oph cloud (Savage & Sembach 1996)

Possible detection of metallic iron emission (McDonald et al. 2010)

Dust Stream in Protoplanetary Disks

What did cause dust homogenization in the presolar nebula?

Investigate a dust stream by monitoring crystalline silicate feature at 10, 20, 30-micron band.

Outward dust stream on the disk surface

Corroboration with Spacecraft Missions

MIMIZUKU can be a strong tool for preliminary or simultaneous obs. of exploration missions.
Target selection for sample return missions
Simultaneous obs. of "Crackup" experiments

Subaru/MIMIZUKU will be a unique mid-infrared faculty in northern hemisphere in this 10 years

Development

Optics

Cryostat & Field Stacker

- Improving cryogenics
- Constructing SW board
- Motion test of F/S

- Mirror degradation found
- Investigating its cause
- Re-fabrication of mirror

Development

Cryo-mechanics

- Fabrication almost finished
- Cryogenic test
- Development of control system

Detector system

Digital board completed

- Construction of analog board
- Development of cryo-elec. board

Schedule

Summary

Usefulness of the new atmospheric windows is validated by ANIR and MAX38 on miniTAO

MIMIZUKU is now under development. Some specifications changed.

Completion of MIMIZUKU : early 2014 Open-use on Subaru : 2015B-2017 MIR-L ch and some functions are limited Full-MIMIZUKU on TAO : 2018-

We hope MIMIZUKU can contribute to your interesting science. Let's discuss how to use MIMIZUKU! Thank you for your participation!