SNe/SNRs in nearby galaxies

2013 May 24

Mimizuku science workshop 2013

IoA

Ho-Gyu LEE

Motivation

Our recent IR observations revealed CSM in SNRs

- Pre-existing structure before SN explosion
- Mass-loss through stellar wind
- Diverse characteristics
 - □ Size, density, progenitor type ...

3C396 H2:[Fe II] (Lee et al. 2009)

If CSM shell exists,

Present SNR ejecta/shock

Interacting with CSM with velocity of 100-10,000(?) km/s

Soon after SN explosion (SNR phase?)

- Light moves first
 - Light echo
 - For pc scale CSM, SN light can reach in a few years
 - Peak at MIR
- Two epochs of interaction
 - Light echo
 - Interaction by ejecta/shock

Example: G11.2-0.3

- One of the brightest [Fe II] emission in SNRs
 - Southeastern shell : circumstellar materials (CSM) or ejecta

Integral field unit (IFU) observations of G11.2-0.3

IFU observations

- FISICA + FLAMINGOS on Kitt peak 4m telescope
- Image slicer : FISICA (works like 21 long-slit spectrographs at a single exposure)

■ FoV = 16" x 33" !

Image construction

Gaussian fit at each pixel , JH bands

Images & spectra

Brightest Clump1

Bright enough to provide distributions in several transitions

Radiative shock model for radial profile

CSM shell in G11.2-0.3

Southeastern CSM shell

- Sum of thin filaments
- Episodic mass loss from a progenitor star?
- Other SNe/SNRs?
 - □ There may be similarity/dissimilarity
 - e.g. ring of 1987A

SN 2002hh in NGC6946 (6Mpc)

- Barlow et al. 2005
 - Spitzer
 - Day: 590, 758
 - Gemini North 11.2um (d)
 - **2004** Sep. 26
 - **900** s

STAR	OBSERVATION DATE	3.6 µm	4.5 μm	5.8 µm	8.0 µm	MIPS, 24.0 µm		
1	2004 Jun/Jul	0.72 ± 0.14	1.22 ± 0.12	4.28 ± 0.50	17.0 ± 1.6	46.5 ± 5.1		
	2004 Nov 25	0.88 ± 0.17	1.07 ± 0.12	3.65 ± 0.35	12.8 ± 1.3			
2	2004 Jun 10	119.6 ± 18.4	68.9 ± 4.2	54.9 ± 2.1	31.4 ± 1.6			
	2004 Nov 25	115.6 ± 15.4	58.8 ± 4.2	53.5 ± 2.2	30.4 ± 1.2			
3	2004 Jun 10	1.12 ± 0.35	0.54 ± 0.10	0.71 ± 0.21	1.23 ± 0.28			
	2004 Nov 25	0.78 ± 0.19	0.62 ± 0.21	0.58 ± 0.16	1.78 ± 0.82			
4	2004 Jun/Jul	0.64 ± 0.17	0.57 ± 0.11	3.52 ± 0.46	9.3 ± 1.2	27.7 ± 4.5		
	2004 Nov 25	0.64 ± 0.24	0.59 ± 0.13	3.27 ± 0.36	10.9 ± 1.1			
5	2004 Jun 10			2.11 ± 0.36	8.6 ± 1.2			
	2004 Nov 25		0.18 ± 0.09	1.80 ± 0.32	6.7 ± 1.1			

FIG. 1.—(*a*, *b*) SINGS IRAC 5.8 and 8.0 μ m images of a 30" × 29" region around SN 2002hh (pixel size = 1"1), obtained on 2004 June 10. (*c*) SINGS MIPS 24 μ m image of the same region (pixel size = 2".6), obtained on 2004 July 9. (*d*) Gemini North Michelle 11.2 μ m image of a 21".8 × 21".8 region centred on SN 2002hh (0".099 pixel⁻¹), obtained on 2004 September 26. Offsets in arcseconds from the position of the SN are marked on the axes. A 3 pixel (0".3) FWHM Gaussian filter was applied to the cleaned image. [See the electronic edition of the Journal for a color version of this figure.]

Dust shell or formation?

Unable to completely rule out dust formation in ejecta

Our observations I: H, [Fe II] imaging of SNe in M51 and M101

About 1 year after explosion

- UKIRT 3.8 m WFCAM
- Plan: this summer 2013. 6

Host G.	Dist.	SN	Туре	Date (Exp.)	Date (Obs.)	[Fe II]	Н
M101	6.7 Mpc	2011fe	la	Aug. 24	2012.6.247.12	15.5 mag	16.5 mag
M51	8 Mpc	2011dh	IIP	Jun. 01	2012.6.257.8	17.0 mag	18.5 mag

M101 : SN la 2011fe

M51:SN IIP 2011dh

Our observations II: near-IR HK spectroscopy

HK high-resolution spectroscopy on 2.7m

- Korean Astronomy & Space Institute (with U. of Texas)
- Operation: scheduled to start from late 2013
 - Submitted to one of scientific interests

Item		H-band	K-band				
Wavelength [µm]		1.65 (1.49 ~ 1.8)	2.16 (1.96~2.46)				
Spectral resolution (R)		40,000	40,000 0.68 arcsec 25 mm				
Slit width (@4m telescop	e)	0.68 arcsec					
Beam size	1.91. al	25 mm					
Main dispersion grating	Glass material	Silicon	Silicon				
(Immersion Echelle	Grating angle [deg]	71.56 (R3)	71.56 (R3)				
grating)	Line density [l/mm]	36.5	36.5				
	Orders (min-max)	98-122	72-92				
Cross dispersion grating (VPHG, first	Glass material	Corning Fused Silica (HPFS 7980)	Heraeus (Infrasil 301)				
order)	Grating angle [deg]	32.43	32.43				
	Line density [l/mm]	650	400				
	Order separation [arcsec] (min-max)	11.8 – 18.3	12.1 - 20.2				
Detector	Туре	H2RG (2Kx2K)	H2RG (2Kx2K)				
	Pixel size [µm]	18	18				

SNe bright at the time of detection

1987A		1987	2	24	5	35.4	-69	16		4.5 IAUC	4316	5	35	27.99	-69	16	11.5 IAUC	4327 IIp	1987A	Shelton, Duhalde, Jones
1885A	NGC 224	1885	8	17	0	42.7	41	16 15W	4S	5.8									1885A	Hartwig (S And)
1895B	NGC 5253	1895	7	7	13	39.9	-31	39 16E	23N	8									1895B	Fleming (Z Cen)
19370	IC 4182	1937	8	16	13	5.8	37	36 30F	40N	8.4 IAUC	680							la	19370	Zwicky
1972F	NGC 5253	1972	5	6	13	39.9	-31	39 38W	1005	85 14110	2405						PASP	85 427	1972F	Kowal
10544	NGC 4214	1054	4	10	12	15.6	36	20 845	2165	9.8 14110	1453						1735	lb	10544	Wild
10031	NGC 2021	1002		20	12	15.0	50	1 4514	1000	10.0 1400	1433	0		25	60	1	12 14110	5721 Ub	10001	Causia
19935	NGC 3031	1995	3	20	3	33.4	09	1 4500	1003	10.2 MOC	3731	3	33	23	09	1	13 IAUC	5731 110	19933	Garcia
19210	NGC 3184	1921	12	5	10	18.3	41	25 /9E	2365	11									19210	Jones
2004dj	NGC 2403	2004	7	31	7	37.3	65	36 160E	10N	11.2 IAUC	8377	7	37	17.02	65	35	57.8 IAUC	8377 II-P	2004dj	Itagaki
1961H	NGC 4564	1961	5	2	12	36.4	11	26	0 5N	11.2 IAUC	1759								1961H	Romano
1980K	NGC 6946	1980	10	28	20	34.9	60	9 280E	166S	11.4 IAUC	3532	20	35	30.07	60	6	23.8 AJ 1	11, 2017 II-L	1980K	Wild
1971	NGC 5055	1971	5	24	13	15.7	42	1 2W	147S	11.5 IAUC	2330								1971	Jolly, Clark
1970G	NGC 5457	1970	7	30	14	3.3	54	21 97W	370S	11.5 IAUC	2269	14	3	0.83	54	14	32.8 AJ 1	11, 2017 II	1970G	Lovas
1960F	NGC 4496	1960	4	17	12	31.7	3	56 38E	24N	11.6 IAUC	1721	12	31	42.05	3	56	47.8 PASP	105, 1250 la	1960F	Humason
1962M	NGC 1313	1962	11	26	3	18.2	-66	29	0 1505	11.7			1.50	1.1.1.22					1962M	Sersic
19204	NGC 2608	1920	1	1	8	35.2	28	29 19 10	5N	11.8			5	1					19204	Wolf
201322	NGC 5643	2013	2	13	14	32.6	-14	13 7414	1805	11.0 CBET	3416	14	32	33.99	-11	13	27.8 CBET	3416 15	201322	Parker
10691	NGC 5045	1069	2	17	12	32.0	20	ED 514	1005	11.0 14110	2095	12	32	0.51	20	51	27.0 COLI	11 2017	1009	Paratt
1908L	NGC 5230	1908	-	1/	13	37.1	-29	32 300	0 520	11.9 AUC	2085	15	37	0.51	-29	51	59 AJ 1	11, 2017	19081	Zuide
19398	NGC 4621	1939	5	19	12	42	11	39	0 535	11.9 IAUC	//4			54	2	1.2			19398	ZWICKY
1939A	NGC 4636	1939	1	17	12	42.9	2	42 26W	20N	11.9 IAUC	737							la	1939A	Zwicky
1989Z	NGC 4013	1989	12	30	11	58.6	43	57 10E	4N	12 IAUC	5162								1989Z	Shaw
1983U	NGC 3227	1983	11	4	10	23.6	19	52 12W	0	12 IAUC	3887	10	23	29.41	19	51	55.7 IAUC	3892	1983U	Pronik
1960R	NGC 4382	1960	12	20	12	25.4	18	11 8E	132S	12 IAUC	1750	12	25	24.84	18	9	19.4 PASP	105, 1250 la	1960R	Gates, Rosino
1979C	NGC 4321	1979	4	19	12	22.9	15	49 56E	87S	12.1 IAUC	3348	12	22	58.63	15	47	51.7 AJ 1	11, 2017 II-L	1979C	Johnson
1909A	NGC 5457	1909	1	26	14	3.3	54	21 620W	408N	12.1									1909A	Wolf (SS UMa)
1989M	NGC 4579	1989	6	28	12	37.6	11	49 40W	33N	12.2 IAUC	4802							la	1989M	Kimeridze
1961V	NGC 1058	1961	12	5	2	43.4	37	21 76F	17N	12.2 IAUC	1764							llp	1961V	Wild
1081B	NGC 4536	1981	3	2	12	34.6	2	11 36F	36N	12.3 IAUC	3580							la	10818	Tsvetkov
10564	NGC 3092	1056	3		11	57.6	53	22 675	05	12.3	5500							10	10564	Gater
10540	NGC 5552	1054	3	27	14	37.0	33	22 0/1	200	12.3	1440							10	10540	Meld
19546	NGC 5008	1954	4	21	14	33.4	4	27 200	205	12.5 AUC	1449							la	19546	Wild
1919A	NGC 4486	1919	2	24	12	30.8	12	23 15W	100N	12.3									1919A	вајапоwsky
2006ce	NGC 908	2006	5	10	2	22.9	-21	14 136W	285	12.4 IAUC	8709	2	22	54.63	-21	14	29.4 IAUC	8709 la	2006ce	Monard
2003hv	NGC 1201	2003	9	9	3	4.2	-26	5 17E	57S	12.5 IAUC	8197	3	4	9.32	-26	5	7.5 IAUC	8197 la	2003hv	LOTOSS
1986G	NGC 5128	1986	5	3	13	25.6	-43	2 120E	60S	12.5 IAUC	4208	13	25	36.51	-43	1	54.2 IAUC	4208 la	1986G	Evans
1985L	NGC 5033	1985	6	13	13	13.5	36	36 68W	51N	12.5 IAUC	4077	13	13	21.79	36	36	33 IAUC	4084 11	1985L	Metlova
1983N	NGC 5236	1983	7	3	13	37.1	-29	52 120W	130S	12.5 IAUC	3835	13	36	51.24	-29	54	2.7 AJ 1	11, 2017 la	1983N	Evans
1980N	NGC 1316	1980	12	7	3	22.6	-37	14 220E	205	12.5 IAUC	3548							la	1980N	Wischnjewsky
1957B	NGC 4374	1957	4	23	12	25	12	53 8W	47N	12.5 IAUC	1600							la	1957B	Romano, Gates
19350	NGC 1511	1935	8	16	3	59.5	-67	38 55F	85	12.5 IAUC	4647								19350	Boyce
18054	NGC 4424	1805	3	16	12	27.2	0	25 755	115	12.5		- 8							19054	Wolf (WW Vir)
200864	NGC 7792	2009	3	25	22	67.0	-22	22 265	1295	12.6 CRET	1215	22	67	47.5	.22	22	24 CRET	1215 1	200954	Monard
200000	NGC 1793	2008	12	25	23	37.8	-32	33 ZUE	13014	12.0 CDET	1313	23	57	47.5	-32	33	24 COLT	2042	200000	In and
201119	NGC 4984	2011	12	9	13	9	-15	31 175	03	12.7 CDET	2943	15	0	30.39	-15	31	4.1 CBET	2943 18	201119	lagaki
2006mq	ESO 494-626	2006	10	22	8	6.2	-27	34 1/E	1245	12.7 CBET	/21	8	0	12.39	-27	33	45.4 IAUC	8//1 la	2006mq	LUSS
1981D	NGC 1316	1981	3	1	3	22.6	-37	14 20W	1005	12.7 IAUC	3583								1981D	Evans
2011iv	NGC 1404	2011	12	2	3	38.9	-35	36 7W	8N	12.8 CBET	2940	3	38	51.35	-35	35	32 CBET	2940 la	2011iv	Parker
2008ge	NGC 1527	2008	10	8	4	8.4	-47	54 5E	2N	12.8 CBET	1531	4	8	24.68	-47	53	47.4 CBET	1531 la	2008ge	Pignata et al. (CHASE)
2005af	NGC 4945	2005	2	8	13	4.7	-49	34 407W	351S	12.8 IAUC	8482	13	4	44.06	-49	33	59.8 IAUC	8482 II	2005af	Jacques, Pimentel
2004et	NGC 6946	2004	9	27	20	35.4	60	7		12.8 IAUC	8413	20	35	25.33	60	7	17.7 IAUC	8413 II	2004et	Moretti
1992A	NGC 1380	1992	1	11	3	36.4	-34	57 3W	62N	12.8 IAUC	5428	3	36	27.43	-34	57	31.5 IAUC	5428 la	1992A	Liller, Brown
19855	MCG -02-07-	1985	9	19	2	27.5	-10	10 10E	105	12.8 IAUC	5719								19855	Keel
1971	NGC 6384	1971	6	24	17	32.4	7	4 27F	20N	12.8 IAUC	2336							- I	1971	Logan
10601	NGC 1058	1060	12	27	2	43.4	37	21 100F	1105	12.0 1400	2104			1	0				10601	Rocino
1909L	NGC 1038	1909	12	2	12	43.4	37	21 1906	1105	12.0 MUC	£134							И	1909L	
19408	NGC 4/25	1940	5	5	12	50.4	25	50 95E	1101	12.8 PASP	52, 200								19408	Johnson
1937D	NGC 1003	1937	9	9	2	39.3	40	53 48E	15	12.8 IAUC	683							la	1937D	ZWICKY
2007sr	NGC 4038	2007	12	18	12	1.9	-18	58		12.9 CBET	1172	12	1	52.8	-18	58	21.7 CBET	1172 la	2007sr	Drake et al.
1978G	IC 5201	1978	11	24	22	21.4	-46	4 96W	42N	12.9 IAUC	3309						lict	ofculur	1978G	Blades, Griffiths, Ward
1964E	UGC 6983	1964	3	12	11	59.2	52	42 83W	44S	12.9 IAUC	1858					IA	UIST		19 46	

Summary

SNe/SNRs with dense shell

- May have two interactions
 - Light
 - Shock
- Our study focused on shocked shell
- Interaction by light (light echo) is interesting
 - Ejecta/light echo (second interaction is expected)
 - Characteristic of shell (size, mass, ...)
- Proposal: Monitoring of known SNe