

TAO WS – 2009.9.11 – Keiichi Maeda

Time scale ~ days to yrs

– phenomenological estimate of M_{abs} , then $\sigma \sim 0.2$ mag.

SN Ia Cosmology @ NIR

- Optical.
 - phenomenological estimate of M_{abs} , then $\sigma \sim 0.2$ mag.
- NIR.
 - **Better standard candles**, $\sigma \sim 0.2 \text{ mag w/o any correction.}$ - Dust free.

- Proposal:
 - Cluster Patrol in J and/or H by TAO.
 - 8' FOV => 1.5Mpc @ z = 0.2, ~ R_{Abell}.
 - 100 galaxies /cluster => 1 SNe Ia /year/cluster (underestimate?).
 - 3 cluster x 1 hr x 2 time/week => ~ 10 SNe Ia/3 year survey.
 - Better strategy will increase the discovery rate.
- Why TAO?
 - Need intensive coverage, < ~ 5 days.
 - J + H simultaneous imaging for K-cor.

- Does it make sense?
 - @z ~ 0.2, Ω_Λ is already visible.
 - "a small sample, better precision" is better than "a large sample, worse precision"?

SN Ia Cosmology @ NIR

- Complementary Scenarios.
 - Mini-TAO and/or MAGNUM.
 - SN survey (replacing the "patrol" strategy).
 - NIR light curves of nearby SNe Ia (still need test).

– Subaru/FOCAS (ToO).

• SN identification.

– JWST.

• NIR Spectroscopy of nearby SNe Ia (K-cor.).

Byproduct: Higher-z SN?

- Monthly deep survey MAY catch a few SNe @ z ~ 1 – 2, by gravitational lensing.
 - Complementary w/ the cluster patrol.
 - Useful for rate study?

Stanishev+ 09; Goobar+ 09

- Cosmology (SNe Ia + time delay) is not promising (?).

Obscured SNe Search

• SN search has been conducted in optical.

- SNuB = SNe / 100yr / 10¹⁰ (L_B/Lsun).

- A large fraction of SF = dusty starburst galaxies.
 - SNe in LIRGs (+ULIRGs) are HIDDEN.
 - L_{B} in these galaxies is NOT a good measure.
- Cosmic SN rate is then highly model dependent.
- Importance of **DIRECT SN detections** in dusty galaxies.
 - Go to NIR. SNuJ, SNuH, SNuK.
 - Core-Collapse, SNe II (Ib/c is more difficult).

Obscured SNe Search

- A lesson from the past study (Grossan+ 99).
 - Even in NIR, a large fraction of SNe are likely missed.
 - Why? Host galaxy nucleous.

• AO... VLT just started. One detection. Continue?

• $M_J \sim -18$, $A_J \sim 3 \rightarrow J = 20 - 21$ @ z = 0.03. $\rightarrow 10$ min?

• Proposal.

- LIRGs AO patrol at z < 0.03.
 - $L_{FIR} \sim 10^{10-11}$ Lsun, 10 (?) SNuFIR => ~ 0.1 1 SN /yr/gal.
 - 30 galaxies x 10 min/month => ~ 3 30 SNe II/1 year survey.
- Exposure time should be optimized.

• Why TAO?

- NIR AO. Patrol observations (hard w/ 8m at least now).

TAO WS – 2009.9.11 – Keiichi Maeda

Direct Progenitor Search in NIR

- Pre-SN image vs. post-SN image.
- Intensively done by HST. VLT/NIR/AO started.

SN IIP 2005cs (Maund+ 05), HST

Direct Progenitor Search in NIR

- Testing stellar evolution and explosion theories.
- Complementary w/ e.g., light curve modeling.

Direct Progenitor Search in NIR

- NIR, a possible new window for a class of SNe.
- SN 2008S.
 - Progenitor NOT detected in optical.
 - IR detection (3-4µm), Spitzer.
 - ~ 6 8Msun, hidden by dusty CSM.
- ONeMg core-collapse?
 - Theoretically expected (8-10Msun)
 - Potentially abundant (faint).

—20 0 20 40 X (arcsecs)

-40 -20 0 20 40 X (arcsecs)

TAO WS – 2009.9.11 – Keiichi Maeda

- Proposal:
 - AO imaging of nearby large galaxies (anyway should be done!).
 - Two AO images @ a few weeks / a few yrs AFTER SN (disappear?).
- Why TAO?
 - AO/NIR (but can be done by others....). Optical search maybe biased.
 - Potentially large sample coverage (vs. JWEB, 8-m).

NIR Nearby SN Followup

- SNe Ia @ early phases (< 3 months).
- SN Search by MiniTaO/MAGNUM?
- M_J = -16, *J* = 19 20 @ *z* ~ 0.03.
 - J, H Light Curves ("standard" candle).
 - ~15 SNe la
 - ~ 7 w/ good temporal coverage.
 - NIR Spectra.
 - ~ 35 SNe Ia, mostly single epoch.
- Outer layers
 - Compositions \rightarrow progenitors.
- Template for Cosmology.

NIR Nearby SN Followup

- SNe Ia @ late phases (> 3 months).
- SN 2003hv@20 Mpc... J ~ 18/19/20 @ 100/200/300 days.
 - J, H Light Curves.
 - Only a few published, no good temporal coverage (1 in 100 days).
 - NIR Spectra... "semester" proposal is a problem (e.g., Subaru).
 - Motohara, Maeda+ 06: 3 SNe Ia @ 200 400days (single epoch).
 - J_{lim}@4hr, S/N = 10 ...19 mag w/o AO, 20.5 mag w/AO.
- A large fraction emitted in NIR (thermal structure in SNe).
- e+ contribution. Escape fraction => B-filed, e+ in the Galaxy.
- ⁵⁷Co.
- Dust (core-collapse SNe).
- Explosion Geometry.

NIR Nearby SN Followup

• Explosion Geometry (example of science cases).

Recent models...

NIR can probe it!

Asymmetric.

Specific Axis?

Kasen, Roepke, Woosley 09, Nature

Maeda, Roepke + 09, ApJ, submitted

Maeda, Taubenberger+ 09, ApJ, submitted

Summary

• Proposed scenarios.

- SN Ia cosmology \rightarrow Hubble diagram @ z ~ 0.2.
 - 6 hr / week x 3 yrs: 10 SNe Ia w/ good luminosity estimate.
- SN II in dusty gals. \rightarrow "True" SN rate.
 - 5 hr / month x 1 yr: 3 30 SNe II.

Best for TAO?

- Progenitor Search \rightarrow NIR likely a new window.
 - Post-SN images taken by, e.g., AO-NIR nearby gal. servey.
 - Another two post-SN images. "Cheap". Best for TAO?
- − Nearby SNe followup → Good dataset. Cosmology.
 - Sampling nearby SNe. MiniTAO, MAGNUM?