Recent Development in Numerical Cosmology & SWIMS

Galaxy Formation

Ken Nagamine Osaka / UNLV

Hide Yajima (Tohoku) R. Thompson (NCSA) J. Jaacks (UT Austin) K. Todoroki (Kansas) J.-H. Choi (UT Austin) Recent Collaborators : I. Shlosman (Kentucky/Osaka) E. Romano-Diaz (Bonn) S. Aoyama, Y. Luo, I. Shimizu (Osaka)

Large Scale Structure

CMB

TAO-SWIMS

Simultaneous-color **W**ide-field **I**nfrared **M**ulti-object **S**pectrograph

Spec & Plans

- NIR multi-object spectrograph / imager for TAO6.5m
- max 9.6arcmin FOV (6.6x3.3arcmin on Subaru)
- \cdot λ = 0.9 2.45 μ m
- Photometry, Multi-object spectrograph (R~1000)
- Simultaneous 2-band obs $(0.9-1.4$ and 1.4-2.45 μ m)
- Early 2016: to Subaru
- Aim: In 2018, first light on TAO6.5m, Chile
- **• Detailed investigation of galaxies at 1<z<5 (peak of formation) • Use IFU and study galactic structures at 1<z<5**
- **• Internal structures of dusty gals (ULIRG/LIRG; e.g. Pa-α)**

What do theory & numerical simulations tell us?

Remaining issues in simulations — What can SWIMS do?

Outline

• **Introduction**

- Numerical Cosmology: Cosmological Hydrodynamic Simulations
- **the 3rd Revolution:** Zoom-in Cosmo Hydro Sims.
- **• Key Physical Processes for Feedback: Stellar, SN, AGN**
- **• Remaining Issues?**

``Concordance ΛCDM model " WMAP, Planck $(\Omega_M, \Omega_\Lambda, \Omega_b, h, \sigma_8, n_s) \approx (0.3, 0.7, 0.04, 0.7, 0.8, 0.96)$
SN Ia UNLV Cosmology Thompson & Nagamine 2008 $\Omega_{DM} \approx 0.26$ $z = 98.0$ Successful on large-scales (>1Mpc) Can we understand galaxy $\overline{}$ Can we understand $\overline{}$ \Box \Box and we differ start galaxy \vert formation in this context? Wavelength λ [h⁻¹ Mpc] $10⁴$ 10 1000 100 $10⁵$ Current power spectrum P(k) [(h⁻¹ Mpc)³] **FFT** $10⁴$ 1000 **simulate** 100 Cosmic Microwave Background ● SDSS galaxies **★Cluster abundance** 10 \blacksquare Weak lensing ▲ Lyman Alpha Forest 0.001 0.01 0.1 $\mathbf{1}$ 10

"Back-bone of structure"

Tegmark+ (2004) constraints.

Wavenumber k [h/Mpc]

Computational Cosmology

Self-consistent galaxy formation scenario from first principles (as much as possible)

Gravity + Hydrodynamics

Three Revolutions in Cosmological Hydro Simulations

1990': 1st Revolution

First cosmological, but coarse calculation

e.g., Cen '92 Katz+ '96

Larger scale, medium resolution **w. subgrid models**

e.g., KN+ '01, 04, 06 Springel & Hernquist '03

Zoom-in method allows much higher res.

Resolution~100 kpc
Resolution ~ kpc Resolution ~ Resolution~ 10-100pc

e.g. MUSIC (Hahn & Abel '11)

Dark Matter Halo —> Galaxies

Stellar-to-Halo Mass Ratio (SHMR)

Behroozi+'10, '13

(cf. Ilbert+'10; George+'11; Leauthaud+'12)

"FEEDBACK" has been the KEY

- Energy(**Light, Mass**) is ejected, and affect later evolution of the system.
- **• What, Who, Where, When, Why, How ?**
- What? : Radiation, Mass (gas, dust)
- Who?: SNe, SMBH(AGN), Massive Stars(MS)
- Where?: galaxy, star-forming region, black hole
- **• When, Why, How?**

Prevalence of Galactic Wind Feedback

-- Pollution of Intergalactic Medium by metals

Blue: Chandra (X-ray) Red Green: HST (optical)

Ubiquitous Outflows in High-z SF Galaxies

Supernova(SN) Feedback

- Source of radiation, metals, cosmic rays; E_{tot} ~10⁵³ erg/SN
- Total FB energy: $E_{fb} \sim 10^{51}$ erg/SN
	- $\rightarrow E_{fb} \sim 10^{48-49}$ erg/M_o (E_k, E_{th)}
- Outflows, Suppression of SF **(White & Rees 78; Dekel & Silk '86)**

Crab Nebula — SN 1054 (NASA, ESA)

- **Vw • Kinetic energy & momentum**
	- **• Thermal energy**
	- **• Type I, II**

Historical Flow Chart of SN Feedback Treatment

Galactic Wind (Kinetic) Feedback

Momentum-driven: $\dot{M}_W V_W \sim \dot{P}_{\rm rad} \sim SFR$

$$
\eta = \frac{\sigma_0}{\sigma_{\rm gal}}
$$

Radiation pressure from massive stars and SNe is applied to the dust particles, which entrains the wind

Higher mass-loading factor for lower mass galaxies. Murray+ '05

Impact of Momentum-driven Wind on IGM 2584 *J.-H. Choi and K. Nagamine* $F_{\rm c}$ Same as internal energy ($F_{\rm c}$), $F_{\rm c}$ and $F_{\rm c}$ ($F_{\rm c}$), $F_{\rm c}$ is left-hand panel to bottom the top left-hand panel to bottom the top left-hand panel to bottom the top left-hand panel to bottom right-hand panel. The IGM temperature is significantly higher on much larger scales in the CW run (top left-hand panel) than in the other runs. The MVV runs right-hand panel. The IGM temperature is significantly higher on much larger scales in the CW run (top left-hand panel) than in the other runs. The MVV runs n Wind on IGM.

Temperature

10 Mpc/h Energy-driven wind (constant Vw)

Projected metal density

Figure 3. Same as in Fig. 2, but for the projected internal energy (! udz): CW, NW, ME, 1.5ME, EE and 1.5MM runs from the top left-hand panel to bottom

hardly heat the IGM on large scales.

Choi & KN '10

Momentum-driven

EAGLE sim (Schaye+ '15)

- Pressure SF model (Schaye & Dalla Vecchia '08)
- Stochastic thermal FB w/ ∆*T, fth(n, Z)* params (Dalla Vecchia & Schaye '08) — but no turningoff hydro force for winds, but instead reserve E_{th} until 3e7 yr.
- Mass-loss (Wiersma+'09) AGB, Type Ia & II SN, MS winds (Margio '01; Portinari+'98)

100 cMpc z=0

T **< 104.5 K (blue) 104.5 K <** *T* **< 105.5 K (green)** $T > 10^{5.5}$ K (red)

- Name \boldsymbol{N} L m_{dm} $m_{\rm g}$ ϵ _{com} ϵ_{prop} (cMpc) (comoving kpc) (pkpc) (M_{\odot}) (M_O) 1504^3 1.81×10^{6} L100N1504 100 9.70×10^{6} 0.70 2.66
- **•(Still, fgas & T for gal clusters may be too high)**

Cosmic Star Formation History

Galaxy Stellar Mass Function

EAGLE: Evolution and Assembly of GaLaxies and their Environments

Gas associated with a typical spiral galaxy. Colour encodes temperature (left) and metallicity (right) Simulation by Rob Crain & the EAGLE collaboration

 $z = 29.9$ $= 0.1$ Gyr $= 2.0$ cMpc

Gas & Temperature Metallicity Metallicity *Visualised with Typhoon (Geach*

u, g, r - composite image SKIRT (Baes+ '11) RT code

AREPO simulation

ellipticals

disk galaxies

Stellar Feedback

(in addition to SN feedback)

- stellar winds from young stars ("Early" stellar FB)
- radiation pressure $\vec{P}_{rad} \approx (1 \exp(-\tau_{UV/optical}))(1 + \tau_{IR})L_{incident}/c$
	- dust absorption of UV —> IR emission
- photo-ionization + photo-electric heating (alters future heating/cooilng rates)

 $1+\tau_\mathrm{IR} = 1 + \Sigma_\mathrm{gas} \, \kappa_\mathrm{IR}$.

Hopkins+ '13, …

Stellar Feedback in Zoom-in Sim

Stellar Feedback in Zoom-in Cosmo Sim

Clumpy High-z Galaxies

CANDELS (Guo+'15)

• f_{clump}~60% @ $z=0.5-3$ for logM \times 10 • Clumps contribute ~4-10% of total SFR

(cf. Colley+ '96, '97)

Clumpy High-z Galaxies in Simulations

Violent, turbulent, warped disks

face-on edge-on

Clump themselves seem to be in Jeans equilibrium.

Radiation Pressure & Clumpy High-z Galaxies

W/out P_{rad} With P_{rad}

• High-ρ clumps disappeared due to P_{rad}. • More extended gas envelopes.

Same sims viewed in Hα (i.e. SFR)

(but no treatment of dust extinction & rad. transfer yet.)

Velocity Fields (for IFU)

Low metallicity inflow penetrates into high-z disk, then forms Hα bright clump.

Another Example of Zoom-in Sim

Constrained Realization

• `Quasar host'-like 5-σ region (20 cMpc/h)

- 3.5 cMpc/h zoom-in region
- \bullet ϵ =300 com pc; \sim 30pc (proper $@z$ \sim 10)
- m_{dm} ~5e5 M.

 m_{gas} ~1e5 Mo

(Romano-Diaz+'11, '13 sim)

 $M_{dust}/M_{metal} = 0.4$, i.e. $M_{dust} = 0.008 M_{gas} (Z/Z_{\odot})$

ALMA Observability

units of [erg s−1 cm−2 Hz−1 arcsec−2]

Yajima+ '15

Escape Fraction of Ionizing Photons

Authentic Ray Tracing method

(Nakamoto+ '01, Illiev+ '06, Yajima+ '09)

Escape Fraction of Ionizing Photons **AUGHUHUHU**

 $z=6$

12

9

10

 $log M_h$ [M_o]

11

-2

0

 $\frac{1}{2}$ og $\frac{1}{2}$

 -2

10

 $log M_h$ [M_o]

9

11

Yajima, Choi, KN '11

all

12

Dust models - 1.

- Bekki'15: live dust ptcls in SPH. 4 component model. $\frac{1}{10 \text{kpc}}$ **Silicate** Dust
	- Tests on isolated MW gal model. Diff softening for each component. Δt =1.4e6 yr.

Dust models - II.

• **McKinnon'15:** AREPO cosmo zoom-in

Dust models - III.

The production/destruction processes of Dust in ISM (e.g. Asano+ '13a, Hirashita '15 etc.)

Isolated gal. w/ 2-component dynamical dust model

(Aoyama, Hou+'15, in prep.)

Summary

- *FEEDBACK, Feedback, feedback….. continues to be the focus of galaxy formation & evolution.*
- *• "Early Feedback" from young stars: rad pressure, momentum, thermal energy, photoionization,*
- *• Radiation Transfer, Dust*
- *• Beginning to resolve Galactic Morphology better*
- *• Downsizing, Color bimodality, ….*
- *• AGN FB, gal-SMBH co-evolution.*