ALMA observations of Hα emitters at z~2

from MAHALO to SWIMS-18

Ken-ichi Tadaki (MPE)

Tadayuki Kodama, MAHALO team, SXDF ALMA deep survey team

> Tadaki et al. 2013, ApJ, 778, 114 Tadaki et al. 2014, ApJ, 780, 77 **Tadaki et al. 2015, ApJL, 811, L3** Tadaki et al. in prep

1. Review of recent z~2 galaxy studies

2. ALMA observations of H α emitters at z~2

Hubble sequence is already in place at z~2.5

Hubble sequence is already in place at z~2.5

Hubble sequence is already in place at z~2.5

Quenching mechanisms

Dekel+06, Foerster Schreiber+14, Martig+09

Quenching mechanisms

bulge formation can be key for quenching of star formation, whatever the cause

 Σ_{1kpc} : stellar mass within a central 1 kpc region

Quiescent galaxies has a dense stellar core (proto-bulge?)

Wet (gas rich) compaction

star-forming disks can be smaller than stellar disks

Zolotov+15

Undervational divided with the emiddle

star-forming disks are larger than stellar disks

Nelson et al. 2015, Tacchella et al. 2015a

Observational studies with dust emission

ALMA 870um maps on K-band image for z=2-4 SMGs

star-forming disks are smaller than stellar disks

How can we verify the wet compaction?

1. Identification of a compact starburst in extended stellar disks for normal SFGs at z~2 ↑ this talk

2. Looking at a correlation between angular momentum and compact starburst

3. Statistical studies with a larger sample from MAHALO-ALMA to SWIMS-18-ALMA

1. Review of recent z~2 galaxy studies

2. ALMA observations of H α emitters at z~2

MApping HAlpha and Lines of Oxgen with Subaru (PI: Kodama)

- MOIRCS narrow-band survey in SXDF-CANDELS field
- high-resolution NIR/optical images are available
- NB209/NB2315 can trace Hα emission at z=2.19/2.53

Tadaki et al. 2013

Sample selection

- ~100 Hα emission-line galaxies were identified
- MOIRCS spectroscopy confirms the redshift with success rate of 90%

Tadaki et al. 2013

Star-forming galaxies at z>2 have a clumpy structure

HST images of Hα emitters at z>2 (~24×24 kpc²)

8 8 8 NB209-6 V₆₀₆ H₁₆₀ M **I**₈₁₄ J_{125} \bigcirc \bigcirc 00 0 H₁₆₀ NB209-7 V_{606} М× J_{125} I₈₁₄ NB209-12 H_{160} V_{606} J_{125} I₈₁₄ V_{606} NB2315-1 H16 I₈₁₄ Μ **()**

► ~40% show clumpy structure

stellar mass distribution is smooth

Tadaki et al. 2014, see also Wuyts et al. 2012

► ~40% show clumpy structure

stellar mass distribution is smooth

Tadaki et al. 2014

A nuclear clump is redder than off-center clumps

nuclear red clump is dusty star-forming?

Tadaki et al. 2014, see also Foerster Shreiber et al. 2011, Guo et al. 2012

A center clump has high Hα/UV ratio

ALMA enables us to identify such a dusty star-forming component

Tadaki et al. 2014, Tadaki et al. 2015, ApJL, 811, 3L

- <u>sample</u>
- 11 H α emitters at z=2.5
- 1 Ha emitter at z=2.2

observation

- dust continuum (265GHz, 1.131mm)
- 0.53"x0.41" resolution (natural weight)
- rms~0.055 mJy/beam
- SFR₅₀~30 M_{sol} /yr (Dale&Helou 02, T_d=30K)

Tadaki et al. 2015, ApJL, 811, 3L

Tadaki et al. 2015, ApJL, 811, 3L

Uncertainties for size measurements at 870um

simulations with mimic circular gaussian sources

For objects with S/N>8, uncertainties for flux/size measurement are 15-20%.

A compact starburst in extended stellar disks?

GALFIT run on HAWKI/K image (HUGS: Fontana et al. 2014)

-	Pointing	Central RA	Central Dec	Area (arcmin ²)	Exp. time (s/h)	Final seeing	Maglim ^a	Maglim ^b	
				K-band					
	UDS1	02:17:37.470	-05:12:03.810	70	48 360/13.43	0.37	27.4	26.1	
	UDS2	02:17:07.943	-05:12:03.810	70	46 820/13.00	0.43	27.3	25.9	
	UDS3	02:18:06.896	-05:12:03.810	70	45 240/12.57	0.41	27.4	25.9	
WFC3/H-ban	d	HAWKI/Ks-band		mask	model			residual	
		1.5" radius tted simultar	neously	masked				C)

- 1. 7" × 7" cutout images are used for fitting
- 2. sources within 1.5" radius are fitted simultaneously
- 3. other neighboring sources are masked
- 4. input parameters are taken from GALFIT outputs in WFC3/H-band (van der Wel et al. 2014)
- center position: almost fixed (±1.0 pixel ~ 0.01")
- re,n, mag: free (0.05"<re<3.5", 0.2<n<8.0)
- q,pa: fixed
- sky: fixed (median sky value is calculated in $7'' \times 7''$ image where all objects are masked) in case where the H-band counterpart does not exist, the SExtractor outputs are used as initial guess.

Simulations with GALFIT

compare input with output (GALFIT results with mimic images)

Uncertainties for size measurements

we can measure sizes with <15% accuracy for K<24 galaxies

Mass-size relation for normal star-forming galaxies

Wet compaction?

From MAHALO to SWIMS-18

For massive normal SFGs with logM*>10.9, we can detect dust emission with ALMA 6-8 minutes integration

MAHALO: ~20 massive Ha emitters in ~90 arcmin² × 2 NB filters

SWIMS-18: ~720 Ha emitters in 1 deg² × 2 NB filters

NB data is not necessarily deep (50~23 mag)

deep K-band images are needed to measure rest-frame optical sizes

seeing < 0.4" -> K-band observations? seeing =0.4-0.6" -> SWIMS-18?

or WFIRST?