SWIMS+WFC3による銀河解剖

但木謙一、児玉忠恭(国立天文台)、 SWIMS 18 collaborators (18人いるわけではない)

内容

1. 銀河の形態進化

(NB filterを使ったサイエンス)

2. 初期宇宙に見る大質量楕円銀河の形成

(MB filterを使ったサイエンス)

constant number density method (Leja+13) : z=2で上からn番目に重い銀河は、z=0でも上からn番目に重い銀河となる

minor mergerによって外側が太っていく。

log M*=10.7の結果の解釈: z~1までバルジ成分はディスク成分と共に成長している。物理過程としてはbar instabilityやclump migrationが考えられるが、まだよくわかっていない。

有効半径とセルシック指数

z=1-2.5の銀河で何が起こっているのか?

SWIMS 18 survey (NB) in CANDELS field

2. 初期宇宙に見る大質量楕円銀河の形成

high redshiftでのgas rich major mergerによってmassive compact systemが形成?

2. 初期宇宙に見る大質量楕円銀河の形成

2. 初期宇宙に見る大質量楕円銀河の形成

blue nuggetsはいつ形成されたのか? quenching timescaleは?

SWIMS 18 survey (MB) in CANDELS field

Medium-band survey: photo-zでz < 4.5の銀河までトレースすることが可能 SWIMS 18 deep surveyを想定:

星質量 M^{*} > 4.5×10¹⁰M_● (Salpeter IMF), M^{*} > 2.5×10¹⁰M_● (Chabrier IMF),

探查領域 360 arcmin²

 $z = 2.5-3.5 \rightarrow 1.1 \times 10^{6} \text{ Mpc}^{3}$ $z = 3.5-4.5 \rightarrow 1.2 \times 10^{6} \text{ Mpc}^{3}$

z=2.5-3.0での数密度を仮定す ると各redshift binで ~100 blue nuggets ~10 red nuggets の検出が期待される。

Summary

1. 銀河の形態進化 (NB filterを使ったサイエンス)

2. 初期宇宙に見る大質量楕円銀河の形成 (MB filterを使ったサイエンス)

特に後者はSWIMS 18 surveyで初めて可能となるサイエンス (Z-FOURGEはz<3.5くらいまで)

誰か高分散のグリズム作りませんか?