2015.09.17 SWIMS-workshop @ IoA

Comparison of global physical properties between Hα and [OIII] emitters at z=2.23

- towards emission line galaxy survey at z > 3 by SWIMS-18

Tomoko Suzuki (Sokendai/NAOJ)

Collaborators :

T. Kodama, D. Sobral, I. Tanaka, M. Hayashi, Y. Koyama, K. Tadaki, Y. Minowa, R. Shimakawa, and M. Yamamoto

Background

Emission line galaxy survey at z > 3

- Before the peak epoch of galaxy formation at $z \sim 2-3$.
- Key epoch to reveal how galaxies have evolved towards the peak epoch
- H α is not available \Rightarrow need to use other emission lines; [OIII], H β , and [OII] for z > 3

▼ SWIMS-18 Target redshift for each emission

NB filters	λ_c	FWHM	$z(H\alpha)$	z([OIII])	$z(H\beta)$	z([OII])
	(µm)	(µm)	6563\AA	5007Å	4861\AA	3727Å
NB1244	1.244	0.012	0.895	1.484	1.559	2.337
NB1261	1.261	0.012	0.922	1.519	1.595	2.384
NB1630	1.630	0.016	1.484	2.256	2.354	3.374
NB1653	1.653	0.016	1.519	2.302	2.401	3.436
NB2137	2.137	0.021	2.256	3.268	3.396	4.734
NB2167	2.167	0.021	2.302	3.328	3.458	4.814

Strong [OIII] emission at high redshift

- High-z star-forming galaxies have stronger [OIII] emission (e.g. Steidel+14; Shapley+15) : due to higher sSFR and/or lower metallicity
- Less sensitive to dust extinction than UV.
- ⇒ [OIII] emission can be used as a good tracer of star-forming galaxies at high redshift ??

[OIII] emitters at z > 3

[OIII] emitter sample at z>3 has been constructed by NB imaging survey.

e.g. (field) Khostovan +15, TS+15 (protocluster) Maschietto+08

- Mahalo-Subaru sample @ SXDF
 : Offset on the M_{*} vs SFR diagram
 between [OIII] emitters and Hα emitters
 - ⇒ reflect the evolution of galaxies from z > 3 or selection effects by using [OIII] line ??

[OIII] emission line as a tracer of star-forming galaxies??

Possible biases by using [OIII] as a tracer of star-forming galaxies

- AGN
- lower metallicity
- higher ionization state
- \Rightarrow Towards the emission line survey at z > 3 by SWIMS-18,

it is necessary to understand what galaxy population is traces by [OIII] emitters at high redshift.

We use the H α and [OIII] emitter samples at z=2.23 obtained through HiZELS, and compare the global physical properties between the two populations.

→ Are there any differences of physical properties between galaxies selected by [OIII] and Hα ??

Emission line galaxy survey by HiZELS

NB filter
 λc (μm) FWHM (Å) redshift
 NB 1.617 211 2.23 ([OIII])
 NB 2.121 210 2.23 (Hα)

→ We can obtain [OIII] + Hα dual emitter sample at z=2.23

 \bigcirc Survey field : ~ 1.6 deg² in the COSMOS field

 \bigcirc NB emitter criteria : $\Sigma > 3$, EW₀ = 25Å

© 3sigma limiting magnitude and flux limit (average)

 NB_{H} : 22.31 mag(AB) / Flim = 1.1×10^{-16} (cgs) NB_{K} : 22.71 mag(AB) / Flim = 4.5×10^{-17} (cgs)

 \bigcirc Redshift separation : photo-z + color selection - *izK* and *UVz* for NB_H - *BzK* and *UBR* for NB_K

100 (%) uoissimsu 40 20 10000 15000 Wavelength (Å)

Sobral + 2013

Hα and [OIII] emitter samples at z=2.23

- Detected with only H α : 427 objects
- Detected with only [OIII] : 141 objects
- Detected with H α and [OIII] : 86 objects (redshift is almost confirmed)
- \bigcirc Possible contamination of [OIII] $\lambda 5007$ emitters
 - [OIII] λ4959
 - Hβ (4861Å)
 - : cannot separate by photo-z and color selection

Assuming the line ratio : [OIII] λ 5007 / [OIII] λ 4959 = 3.0

 $[OIII] \lambda 5007 / H\beta = 5.0$

the expected contribution of both emitters is $\leq 10 \%$ \Rightarrow contribution is small

lacksquare Redshift coverage of the four emission lines

Global physical quantities

Comparison between three samples

- Stellar mass : estimated by SED fitting (BC03, Salpeter IMF, declining SFH)
- SFR from UV luminosity (based on Madau+98)
- Dust extinction @ FUV : based on UV slope (based on Heinis+13)

Global physical quantities

Comparison between three samples

- Stellar mass : estimated by SED fitting (BC03, Salpeter IMF, declining SFH)
- SFR from UV luminosity (based on Madau+98)
- Dust extinction @ FUV : based on UV slope (based on Heinis+13)

Comparison on the M_{\star} -SFR diagram

No large systematic difference on the main sequence diagram

Contribution of AGNs ??

- rest-frame UVJ diagram
 - separate quiescent galaxies and young, dusty, star-forming galaxies

Some objects are classified as quiescent galaxies.

- \Rightarrow Quiescent galaxies with line emission
 - : Emission line is dominated by AGN activity.
- \star Fraction of objects classified as quiescent galaxies

$H\alpha$ emitters	: 2%	
[OIII] emitters	: 8%	\rightarrow slightly biased to AGN??
Dual	: 2%	

- : But fraction is not so large...
- We cannot mention the fraction of the galaxies contributed by AGN and star formation

[OIII] emission line as a tracer of star-forming galaxies

- : [OIII] emitters do not show large systematic differences as compared to H α emitters at z ~ 2.
 - \Rightarrow [OIII] can be used as a tracer of star-forming galaxies.

SWIMS-18 survey :

- \star Larger sample in the general field
- \star Emitter sample in high density region
 - \Rightarrow [OIII] emitter search in protocluster fields at z > 3
 - Number of NB surveys in protocluster fields at z > 3 is small...
- ★ Follow-up spectroscopy is important for their detailed physical properties. Investigate the excitation states of star-forming galaxies at z > 3 with [OIII], Hβ, and [OII].

Dual emitter survey by SWIMS-18

 \star Relation between H α /[OIII] ratio and stellar mass

→ Discuss the excitation states for star-forming galaxies at z~ 1.5–2.3 only by imaging observation.

Summary

Towards the emission line galaxy survey at z > 3 by SWIMS-18, we compare global physical properties between H α and [OIII] emitters at z=2.23 in order to investigate the relation of the two galaxy samples. We construct three galaxy samples; H α emitters, [OIII] emitters, and H α + [OIII] dual emitters using NB imaging data from HiZELS.

© Comparing the global physical properties, the stellar mass distributions of three samples are statistically same with each other.

- \bigcirc On the stellar mass SFR diagram, there is no large offset between them.
- \bigcirc [OIII] emission line can be used as a indicator of star-forming galaxies at high-z.

Through SWIMS-18 survey, we will obtain larger [OIII] emitter sample at z > 3 across the various environments. This enables us to investigate the star-forming actives of galaxies and its environmental dependence before the peak epoch.