TAO/SWIMS サイエンスワークショップ (IoA, Univ of Tokyo, 5/Aug/2013)

SWIMS18サーベイで探る銀河形成の最盛期 (1<z<3 up to 4.5)

児玉 忠恭 (国立天文台)

小山佑世(国立天文台)、但木謙一(国立天文台)、林将央(東大宇宙線研)、 嶋川里澄(ハワイ観測所)、田中壱(ハワイ観測所)、他

A galaxy cluster RXJ0152 at z=0.83 (Subaru/Suprime-Cam)

銀河形成最盛期: 1<z<3 (6>T_{univ}(Gyr)>2)

宇宙における銀河やAGNの活動性がピーク!

大局的な星形成率

QSOの個数密度

銀河団のRed Sequence や 銀河形態のHubble系列が発現しだす時代。 → 銀河の屋台骨が作られた、銀河形成&進化史上、最も重要な時代!

銀河形成最盛期(z~2)研究における 近年の目覚ましい進展の数々

- Presence of Dusty Starbursts (SMGs, red HAEs)
- Rapid Decline of Stellar Mass Density
- Emergence of Red Sequence
- Main Sequence of Star Forming Galaxies
- Fundamental Metallicity Relation
- Massive Compact Spheroids (red nuggets)
- Cold Streams (in theory)
- Turbulent, Clumpy, but Rotational Disk
- Gas Outflow (feedback)
- High Ionization State Galaxies (strong [OIII] line)

Stellar mass functions (z)

ULTRA-VISTA (COSMOS)

95,675 galaxies over a 1.62 deg^2 field down to Ks=23.4 (AB)

Fig. 5.— Stellar mass functions of all galaxies, quiescent galaxies, and star-forming galaxies in different redshift intervals. The Stellar mass densityは現在に比べ z=1で50% z=2で10% z=3 5で1%に主で下カ Stellar mass densityは現在に比べ、z=1で50%、z=2で10%、z=3.5で1%にまで下がる。

 \mathbf{M} , whereas the star formulation \mathbf{M} , whereas the star growth at the quiescent population. There is controlled to \mathbf{M} also evidence for the low-mass end slope for M uzzin et al. (2013)

UV-selected samples tend to miss the most massive galaxies !

FIG. 12.— Comparison of the K_s -selected SMF of star-forming galaxies at $3.0 < z < 4.0$ from UltraVISTA (blue) and other SMF in the literature. The Marchesini et al. (2009) and Marchesini et al. (2010) SMFs are also K_s -selected samples and agree well with the UltraVISTA SMF. The Stark et al. (2009); González et al. (2011), and Lee et al. (2012) SMFs are UV-selected. These agree reasonably well with UltrsVISTA at $Log(M_{star}/M_{\odot}) = 11.0$, but it appears the UV-selection may miss the most massive galaxies in this redshift range.

Muzzin et al. (2013) ULTRA-VISTA (COSMOS)

Daddi et al. (2007)

Star formation efficiency variations in the SFR-M* plane SFR−M*ダイアグラム上での、星形成効率(SFE)と分子ガスの割合

Main Sequenceからの距離の関数として、分子ガス割合も、星形成効率も、共に高くなる。

Gas fraction vs. sSFR

ان
د اخ Clear correlation! Depletion time scale~0.7Gyr Need continuous gas supply!

の分散にはgas fractionの違いが log(Mmol
Flog Main sequenceや Fundamental metallicity relation 大きく寄与(主要因?)

ー方で分散もあり、SFEも寄与?

Tacconi et al. (2013)

Massive, compact, spheroidal galaxies at z>2

 10^{11}

大質量銀河(M>10¹¹M)のサイズと質量進化

Figure 9. Comparison of the mass contained within a fixed radius of 5 kpc (red curve) to the mass at larger radii (blue curve), as a function of redshift. Error bars are 95% confidence limits derived from bootstrapping. The total mass is shown in black. Galaxies with number density $n = 2 \times 10^{-4}$ Mpc⁻³ have a nearly constant mass in the central regions. The factor of \approx 2 increase in total mass since $z = 2$ is driven by the addition of stars at radii > 5 kpc.

van Dokkum et al. (2010) NEWFIRM medium-band survey

"MAHALO-Subaru"

MApping HAlpha and Lines of Oxygen with Subaru

Unique sample of NB selected SF galaxies across environments and cosmic times

18 nights for imaging, >15 nights for spectroscopy

Unique Sets of Narrow-Band Filters on Wide-Field Cameras Suprime-Cam (optical) and MOIRCS (NIR)

The existing Suprime-Cam NB-filters capture emission lines from known good targets. The MOIRCS NB-filters were specifically designed for good targets at frontier redshifts.

Clean selection of SFGs (line emitters) by NB imaging

Tadaki et al. (2013a)

An ancient city of galaxies under rapid construction

USS1558-003 (z=2.53)

Hα imaging with MOIRCS/NB2315 3.4 hrs, 0.3-0.4" seeing

68 Ha emitters (HAEs) are detected

~20x denser than the general field. Mean separation between galaxies is ~150kpc.

A star-bursting proto-cluster!

星形成銀河のMain Sequenceの環境依存性 @z=2

原始銀河団(PKS1138 at z~2) の星形成銀河は、フィールドと 同じ"Main Sequence"に載る。

しかし、

MS上での銀河の分布は異なり、 原始銀河団の方がより質量の が大きい(星形成率が高い)側 に偏った分布をしている。

→ 高密度領域での加速的な 銀河形成を示唆

Koyama et al. (2013a)

 M*-dependent dust correction for Hα is applied. (Garn & Best 2010)

SF galaxies at the peak epoch @SXDF-UDS-CANDELS

Clumpy Structure is Common

~40% of HAEs at z~2 show clumpy (or merger) structures

HST images $(V₆₀₆, I₈₁₄, H₁₆₀)$ from the CANDELS survey

less massive clumpy galaxies $(M_{star}< 10¹⁰M_®)$

massive clumpy galaxies $(M_{star}=10^{10-11}M_{\odot})$

colours (I814-H160) of individual clumps are shown with red numbers

Tadaki et al. (2013b)

Massive clumpy galaxies tend to have a red clump near the stellar-mass center, which may be hosting a central dusty starburst and forming a bulge eventually !

Environmental dependence of the clumpiness and their colours is expected!

Size-Mass Relation of NB(Hα)-selected SF Galaxies at z~2 in SXDF-UDS-CANDELS field

Tadaki et al. (2013)

Two Channels for Formation of Massive Quiescent Galaxies

Schematic diagram of SFR-M* (Main Sequence)

Stellar Mass (M*)

課題

形成最盛期にある銀河の、形態獲得、星形成、AGN、フィードバックが、 「いつ」、「どこで」、「どのように」起き、どう「相互に関連」しているのか?

これらを「無バイアス」にかつ「統計的」に突き詰める。

- 1. バルジ形成の謎。クランプ移動か、銀河の合体か?
- 2. 銀河形成(星形成)のモード?継続的進化とバースト・フェ ーズの相対寄与は?
- 3. 星やガスの内部運動は?形態獲得との関係は?
- 4. 銀河のIMFは?時間変化?モード依存性?
- 5. 星形成活動とAGN活動とのリンクおよびフィードバック?
- 6. 遠方(特に低質量)銀河の物理状態?([OIII]が強い理由)
- 7. これら全ての環境と質量への依存性は?なぜ?

Medium-band redshifts

Fig. 2.— Spectral energy distributions from $0.3 - 2.4 \mu m$ of the four galaxies in the SDSS 1030 Kriek et al. (2008) sat the highest S/N ratio. Black points are broad band photometric data, blue points are the new medium band data. The med data are able to pinpoint the location of rest-frame optical breaks in the spectra. Dark grey spectra are the best-fit EA2 SEDs. Light grey points are binned near-IR spectra obtained with GNIRS on Gemini, from Kriek et al. The best-fit mode the (independent!) GNIRS spectra very well.

$$
\angle z/(1+z) \sim 0.02
$$

van Dokkum et al. (2009), arXiv:0901.0551

Fig. 3.— Comparison of photometric redshifts derived from medium band photometry to spectroscopic redshifts measured with the GNIRS near-IR spectrograph on Gemini for the four galaxies shown in Fig. 2 (solid symbols). There is very good agreement, with scatter $0.01 - 0.02$ in $\Delta z/(1+z)$. Open symbols show the remaining 10 objects from the Kriek et al. (2008) sample. The scatter is small even for these galaxies, even though the S/N of their medium band photometry is lower than our survey criterion.

wavelengul $[\mu m]$

wavelength $|\mu m|$

SWIMS-18 NB emitters survey (z=0.9, 1.5, 2.5, 3.3) ل OVVIIVIO- TO IND GITIILLEIS SUIVEY (2-0.9, T.O, 2.O, O.

Hα Emitter Survey on a Gigantic Super-Cluster at z~0.9

SWIMS-18

1平方度の広域、18フィルターの超多色撮像、z~4.5まで拡張

- Medium-band (9枚) のphot-z探査による、1<z<4.5における、 准星質量リミットサンプル(特に受動的銀河)の構築とその進化 の研究。 ⊿z/(1+z) < 0.02
- Narrow-band (6枚) のHα/[OIII]輝線探査による、z=0.9, 1.5, 2.5, 3.4における、准星形成率リミットサンプルの構築とそ の進化の研究。 低質量側に延長。AGNの寄与も明らかに。

→ 銀河の質量集積、星形成、BH成長の歴史を、 「無バイアス」かつ「統計的」に明らかにする!

Z-FOURGE @Magellan 6.5m (FourStar Galaxy Evolution Study)

- Four Star Infrared Camera; Hawaii-2RG x 4
- One deep 10.9'x10.9' field each in COSMOS, CDFS and UDS FourStar; Hawaii-2RG x 4)
- 30,000 galaxies at 1<z<3
- J1, J2, J3 \approx 25.5, HI, Hs \approx 25, and Ks \approx 24.5 (AB, 5σ, total mag for compact sources)
- $\Delta z/(1+z) \sim 0.02$

SWIMS-18がZ-FOURGEより優れている点

• Medium-band filtersの枚数増 $J1(Y), J2, J3, Hs, H1, Ks \rightarrow Y, J1, J2, H1, H2, H3, K1, K2, K3$ (Hを2から3分割へ。Kを1から3分割へ。計6から9枚へ。)

! Phot-z精度(特にz>3)の向上、4<z<4.5銀河サンプルの構築(B-drop LBGと連携)

• Narrow-band filtersの存在

6枚の狭帯域フィルター、Hαと[OIII]の2ラインを狙う3組のペア、オンバンドと オフバンドが隣接。

→ [OIII]の強い遠方銀河に最適化、よりクリーンなエミッター選択

• 2バンド同時観測

 λ<1.4µm (blue) と λ>1.4µm (red) とを同時観測。 → サーベイ効率が2倍に! 但し、初期視野は3分の1。検出器倍増が必須。

• 観測時間の集中投資

! 1.5年使って10倍広い視野(1平方度)を!原始銀河団(>1014M◉)も入る。

Survey Design for SWIMS-18 (imaging)

- 1 sq. deg. (CANDELS, HSC-Ultra-Deep) (SWIMS18-Wide) 100 pointings $(x25 \text{ hrs/FoV}) = 4,000 \text{ hrs} = 365 \text{ nights}$ SFR-limit sample: 7.5×10^5 Mpc³ at each redshift (Hα emitters) 3, 10, 30 M◉/yr (z=0.9, 1.5, 2.5) ~16,000, 8,000, 4,000 HAEs (同上) M^{*}-limit sample: 1.2×10^7 Mpc³ (Δz=1) $M^* = 10^{10}M_{\odot}$ (z=1.5), 10¹¹M_° (z=4) ~ 100個
- このうち 0.1 sq. deg.では、5倍の積分時間 (SWIMS18-Deep)

 ! **TAO**のおよそ**1.5** 年間分の観測時間を投入すればよい。 (SWIMSの視野を2倍にできれば、半分の時間または倍の視野) Subaru搭載時(2015−2017)にはこの1/10規模をパイロットサーベイとして実行

Spectroscopic follow-up of SWIMS-18

PFS (optical) + SWIMS (NIR)

*Accurate physical quantities Spec-z and 3D structures Dust corrected SFRs (Hα/Hβ) Gaseous metallicity (R23, O32, N2) AGN separation ([OIII]/Hβ vs. [NII]/Hα) Composite spectra of red galaxies (post-starburst) *SWIMS-IFU Kinematics (rotation/random/outflows)

- Central AGN
- Star forming regions