NIR Observations of Gravitational Wave Sources

Masaomi Tanaka (National Astronomical Observatory of Japan)

C: NASA

NIR Observations of Gravitational Wave Sources

Why NS merger?
EM emission and NIR observations

New astronomy with Gravitational waves

Sensitivity increase by a factor of 10 (in amplitude) => volume increase by a factor of 1000!

Advanced LIGO (US, 2015- THIS WEEK!!)

ADVANCED LIGO

Gravitational wave sources

Supernova

d ~ 10 kpc (Galactic)

~ 0.01 events/yr

d ~ 200 Mpc (Extragalactic)

~ 0.1-100 events/yr

GW alert error e.g. 6 deg x 6 deg (not box shape in reality)

GW detection

Electromagnetic transient search

Source identification

Mass ejection from NS mergers

M ~ 10⁻³ - 10⁻² Msun v ~ 0.1 - 0.2 c

Hotokezaka+13, PRD, 87, 4001 Rosswog+13, MNRAS, 430, 2580

r-process nucleosynthesis

NS merger can be the origin of r-process elements - Rate ~ 10⁻⁴ events/yr/Galaxy (<= GW)

- Mej ~ 10⁻² Msun/event (<= Opt/IR)

NIR Observations of Gravitational Wave Sources

Why NS merger?
EM emission and NIR observations

r-process nucleosynthesis powers EM emission

Thick against gamma-rays => Opt/NIR emission

- Very red SED (peak at NIR) R-H ~ 7 mag
- NIR emission lasts longer

MT & Hotokezaka 2013

- Extremely broad-line (feature-less) spectra

Tanvir+2013, Nature, 500, 547 Berger+2013, ApJ, 774, L23

As expected by theoretical models!! ==> ejection of ~0.02 Msun

Advantage of NIR

Optical (i)

NIR (J)

MT+14

Advantage of NIR

MT+14

GW alert error 8m Subaru e.g. 6 deg x 6 deg **Hyper Suprime-Cam** (not box shape in reality) **1.5 deg** TAO/SWIMS 3.7' x 8.6' (0.06 x 0.14 deg) **4m Blanco** DECam 8m LSST (2020-)**3.5 deg** 2.2 deg 3.6m CFHT MegaCam (1 deg)

Galaxy search

10-50 galaxies in the localization area (Caveat: ~50% of light, incompleteness of the catalog)

Summary

- EM follow-up is critical for GW astronomy
- EM emission from NS merger
 - radioactively powered emission
 - NS merger as potential origin of r-process elements
- NIR observations
 - Pros: Peaks at NIR wavelengths
 - Pros: NIR emission lasts longer
 - Cons: narrow field of view but can be overcome by galaxy search
 - Flexible operation of TAO
 - Spectroscopy for nearby events ... Smoking gun!