Search for distant (z > 6) quasars with SWIMS + Subaru/HSC

Yoshiki Matsuoka (NAOJ)

Today's talk

1. Motivations and the frontier of high-z quasar survey

- 2. HSC-SSP z > 6 quasar survey
- 3. Proposal of SWIMS + HSC survey (a single slide...)

Motivations

- ★ What were the seeds?
- ★ When were they born?
- ★ How did they grow?

- ★ When and where?
- ★ How did it proceed?
- ★ lonizing sources?

Evolution of the host galaxies

- \star Chemical evolution
- \star Star formation activity

\rightarrow High-z quasars as a unique probe of the distant Universe

Era of systematic surveys

Sloan Digital Sky Survey
* 2.5 m telescope
* optical (u, g, r, i, z) bands
* z < 20.5 mag
* 8,000 deg²

High-z quasars

★ 30 objects
 (Fan+00,01,03,04,06;
 Jiang+08,09)

- *5.7 < z < 6.4
- **★** -27.9 < M₁₄₅₀ < -24.4
- ***** (nearly) Completed.

Canada-France High-z Quasar Survey * CFHT 3.6 m * optical (u, g, r, i, z) bands * $z \leq 22 \text{ mag}$ * ~600 deg²

High-z quasars * 19 objects (Willott+07,09,10)

- ★ 5.9 < z < 6.4
 ★ -27.0 < M₁₄₅₀ < -22.2
- ★ (nearly) Completed.

UKIDSS/VIKING surveys

- ★ 4-m telescopes
- \bigstar NIR (Z, Y, J, H, K) bands
- ***** Y < 22.3 mag
- ***** 1,500 deg²

High-z quasars

- ★ 6 objects
- (Venemans+07,13;
- Mortlock+09,11)
- ***** 5.9 < z < 7.1
- $* -27.1 < M_{1450} < -25.5$
- ★ 10-20 more objects
 - expected at z ~ 7.

Era of systematic surveys

TAO/SWIMS science workshop 2015 (Mitaka; Sep 18-19, 2015)

HSC-SSP High-z Quasar Survey

Table 7: Quasar Samples

-	Wide (1400 deg^2)				Deep (27 deg^2)				
redshift	3.7 - 4.6	4.6 - 5.7	5.9 - 6.4	6.6 - 7.2	< 1	3.7 - 4.6	4.6 - 5.7	6.6 - 7.2	
mag. range	r < 23.0	i < 24.0	z < 24.0	y < 23.4	i < 25.0	i < 25.0	i < 25.0	y < 25.3	
number	6000	3500	280	50	2000	200	50	3	

We will probe the most distant (5.9 < z < 7.4) quasars over 1,400 deg², down to ~2 mag lower luminosity (M₁₄₅₀ \leq -22 mag) than any previous wide-field survey.

Our very basic strategy

Where do we stand with the HSC-SSP survey?

- * As of 2015 Sep, ~150 deg² (TBC) has been imaged and the data released to the collaboration.
- Our candidate selection algorithms found a few tens of promising candidates.
- ★ Follow-up spectroscopy approved with
- Subaru/FOCAS (2014 Spring) \rightarrow bad weather
- GTC/OSIRIS (2015 Fall) \rightarrow queue obs. in progress
- Subaru/FOCAS (2015 Fall) \rightarrow early Nov. and Dec.
- ★ Follow-up spectroscopy proposed to
- Subaru/FOCAS (2016 Spring)
- GTC/OSIRIS (2016 Spring; TBC)
- Gemini/GMOS (2016 Spring; TBC)

We expect to find the first HSC z > 6 quasars this Fall!

Proposal: SWIMS + Subaru/HSC quasar survey ~ breaking through into z > 7.2 ~

Draft plans

- [Plan A] SWIMS 36,000 shots (1,000 deg²) with t_{JH} = 2 min over the HSC SSP-Wide fields
- * $y_{HSC} < 24.4 \text{ mag}, J < 23.0 \text{ mag}, H < 22.5 \text{ mag}$
- * Expected discovery: $0 \sim 20$ quasars at z > 7.2.
- * SWIMS observing time: 1200 hours (120 nights).

[Plan B] SWIMS 360 shots (10 deg²) with t_{JH} = 15 min over the HSC SSP-Deep y-band coverage

- ***** y_{HSC} < 25.3 mag, J < 24.0 mag, H < 23.5 mag
- * Expected discovery: $0 \sim 0.6$ quasar at z > 7.2.
- * SWIMS observing time: 90 hours (9 nights).

[Plan C] SWIMS 3,600 shots (100 deg²) with $t_{JH} = 15 \text{ min} +$

HSC imaging (60 shots \times t_y = 2.1 hrs for SSP Deep depth)

- ***** y_{HSC} < 25.3 mag, J < 24.0 mag, H < 23.5 mag
- * Expected discovery: $0 \sim 6$ quasars at z > 7.2.
- * SWIMS observing time: 900 hours (90 nights).
- * HSC observing time: 130 hours (13 nights).

	7.2 < z < 7.7	7.7 < z < 8.2	8.2 < z < 8.7	8.7 < z < 10
Plan A	$0.0 \sim 0.7 \sim 9$	$0.0\sim 0.1\sim 4$	0.0 ~ 0.0 ~ 3	0.0 ~ 0.0 ~ 2
Plan B	0.0 ~ 0.1 ~ 0.3	$0.0\sim 0.0\sim 0.1$	$0.0\sim 0.0\sim 0.1$	0.0 ~ 0.0 ~ 0.1
Plan C	0.0 ~ 0.5 ~ 3	0.0 ~ 0.1 ~ 1	0.0 ~ 0.1 ~ 1	0.0 ~ 0.0 ~ 0.6

Expected number of quasar discovery for three SMBH evolution models $(R_{Edd} = 1 \text{ model} \sim R_{Edd} = 0.5 \text{ model} \sim 10^{-0.5z} \text{ model})$

[Plan D] SWIMS a few 100 shots with $t_Y = 20 \text{ min}$, $t_{JH} = 30 \text{ min}$ to refine a list of HSC z ~ 7 quasar candidates

- ***** Y < 24.4 mag, J < 24.4 mag, H < 23.9 mag
- * Expected discovery: ~ 50 quasar at $z \sim 7$.
- * SWIMS observing time: a few 100 hours (a few 10 nights).

Expected impacts, to name a few:

- first discovery of z > 7.2 quasars
- SMBH growth via mass estimates
 - evolution of the host galaxies
 - cosmic reionization