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Preface

Refer to original AGNAGN textbook when discussing tables or figures.

I’ve tried to fill in every gap I found in original textbook.

Therefore, this slide consists of 60% original contents and 40% my own
interpretation, derivation , or explanation.

Since 40% my own interpretation may include some incorrect points, I
would appreciate it if you tell me any mistake or suspicious point.
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3.1 introduction

heating : photoionazation (G)

cooling : recombination(L), cooling by line emission ≫ free-free emission

In the equilibrium,

G− L = (line) + (free-free) (1)
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3.2 Input by Photoionization

When an ionizing photon (hν) is absorbed, an electron is produced with

kinetic energy
1

2
mu2. In this process, energy conservation is

hν = hν0 +
1

2
mu2, hν0 = 13.6eV(ionizing energy) (2)

By integrating this kinetic energy, total energy input by photoionization is

G(H) =

∫
ionizing

#(photoelectron)× 1

2
mu2 (3)

=

∫ ∞

ν0

n(H0)#(photon)h(ν − ν0)aν(H
0)dν (4)

where, n(H0): number density of H0, aν(H
0): cross section.

Assume that the H0 gas is under the radiation field Jν(intensity),

#(photon) =
4πJν
hν

(5)
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3.2 Definition of Ti

Therefore, the total energy input (per unit volume, unit time) is

Energy input by photoionization

G(H) =

∫ ∞

ν0

n(H0)
4πJν
hν

h(ν − ν0)aν(H
0)dν (6)

Assume ionization equilibrium (number of H0 is balanced)

n(H0)

∫ ∞

ν0

4πJν
hν

aνdν = npneαA(H
0, T ) (7)

the total energy input is written as follows

G(H) = nenpαA(H
0, T )

∫∞
ν0

4πJν

hν h(ν − ν0)aν(H
0)dν∫∞

ν0

4πJν

hν aνdν
(8)

=: nenpαA(H
0, T )

3

2
kTi (9)
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3.2 Interpretation of Ti

RHS of eq(9) is the definition of Ti, which reflects the ”feeling” that eq(8)

represents the ”average” of
1

2
mu2 and it corresponds to internal energy.

simple example

Consider a simple case; Jν = Bν(T⋆), kT⋆ < hν0, aν ∝ ν−3.
One can numerically calculate the integrations, and get Ti ≃ T⋆.
So, this case is one evidence to regard Ti as the temperature of
photoelectrons.
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3.2 Hardening(Ti depends on the distance from the star)

We can derive the spatial distribution of Ti.
According to radiative transfer, Jν(r) = Jν(0)e

−τν = Jν(0)e
−naνr.

Therefore,

3

2
kTi(r) =

∫∞
ν0

4πJν(0)
hν e−naνrh(ν − ν0)aνdν∫∞
ν0

4πJν(0)
hν e−naνraνdν

(10)

Then we use an inequality (next slide) and we get

3

2
kTi(r + dr) =

∫∞
ν0

4πJν(r)
hν e−naνdrh(ν − ν0)aνdν∫∞
ν0

4πJν(r)
hν e−naνdraνdν

>
3

2
kTi(r) (11)

Note that aν is known to be decreasing (by Fermi’s golden rule), so e−naνdr is
increasing.
So, at larger distance from the star, mean energy of photoelectrons
3

2
kTi(r) becomes larger.
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3.2 Lemma (redistribution of probability)

Lemma(redistribution of probability)� �
X:random variable

P1(x) = f(x)/Z1, Z1 =

∫
R
f(x)dx (12)

P2(x) = f(x)g(x)/Z2, Z2 =

∫
R
f(x)g(x)dx (13)

If g(x) is increasing, then

EP1
[X] < EP2

[X] (14)� �

x

P
P1

P2

E1 E2
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3.2 Hardening(Ti depends on the distance from the star)

Qualitative explanation of this hardening

aν : smaller frequency is effectively absorbed.

high energy (high frequency) photons penetrate longer distance.

Therefore, mean energy (Ti) at larger r becomes higher.
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3.3 Energy Loss by Recombination

When an electron falls into a quantum state (n,L), its kinetic energy
1

2
mu2 is

lost. By taking the average of
1

2
mu2 in velocity space,∫ ∞

0

1

2
mu2σnL(H

0, T )uf(u)du (15)

where, σnL: cross section , f(u): probability density (often
Maxwell-Boltzmann distribution is used).
Note that σnL · u means the volume of cylinder, and

σnL · u× f(u)du = #(recombine with velocity u) (16)

σnL

u× 1unit time

10 / 35



3.3 Energy Loss by Recombination

Suming up mean energies (15) over quantum states (n,L), total energy loss by
recombination is

Energy loss by recombination

LR(H) = nenpkTβA(H
0, T ) (17)

where

βA(H
0, T ) =

∞∑
n=1

βn(H
0, T ) =

∞∑
n=1

n−1∑
L=0

βnL(H
0, T ) (18)

with

βnL(H
0, T ) =

1

kT

∫ ∞

0

uσnL(H
0, T )

1

2
mu2f(u)du (19)

Note that the denominator kT of eq(19) is just for making it dimensionless.
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3.3 Inequality between T, Ti

Since σnL ∝ u−2, electrons with lower kinetic energy are likely to be captured.
Therefore,

(mean captured energy) < (mean electron energy) → βAkT <
3

2
kT (20)

In a pure H nebula that had no radiation losses, the thermal equilibrium is

G(H) = LR(H) (21)

nenpαA(H
0, T )

3

2
kTi = nenpβA(H

0, T )kT (22)

3

2
kTi = βA(H

0, T )kT <
3

2
kT (23)

Therefore, we get Ti < T .
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3.3 Decomposition of G,LR

In general, the radiation field Jν consists of stellar radiation and diffuse
radiation (Jν = Jνs + Jνd). So, we can rewrite G(H) as follows

G(H) =

∫ ∞

ν0

n(H0)
4π(Jνs + Jνd)

hν
h(ν − ν0)aν(H

0)dν =: Gs +Gd (24)

Also, we can decompose LR(H) as follows,

LR(H) = nenpkT (βB + β1), where βB =

∞∑
n=2

βn (25)

Note that βA = βB + β1.

13 / 35



3.3 On-the-spot approximation

on-the-spot approximation

Photon emitted during a recombination to n = 1 level is instantly ab-
sorbed by a nearby spot. Energy gain by Jνd and energy loss by β1 can
simply be omitted.

Using this approximation,

GOTS(H) = Gs =

∫ ∞

ν0

n(H0)
4πJνs
hν

h(ν − ν0)aν(H
0)dν (26)

= nenpαB(H
0, T )

∫∞
ν0

4πJνs

hν h(ν − ν0)aν(H
0)dν∫∞

ν0

4πJνs

hν aν(H0)dν
(27)

and

LOTS(H) = nenpkTβB(H
0, T ) (28)
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3.3 Rough illustration of on-the-spot approximation

E

n = 1

n = 2

n = 3
n = ∞

β1 ∼ Jνd

E

βB , Jνs

βB
Jνs

En = −13.6eV/n2
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3.3 Effect of He

The generalization to include He.

G = G(H) +G(He), LR = LR(H) + LR(He) (29)

where

G(He) = nen(He+)αA(He
0, T )

∫∞
ν2

4πJν

hν h(ν − ν2)aν(He0)dν∫∞
ν2

4πJν

hν aν(He0)dν
(30)

and

LR(H) = nen(He+)kTβA(He0, T ) (31)

Contributions of other atoms are much less since both G and LR are
proportional to density n.
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3.4 Energy Loss by Free-Free Radiation

The rate of cooling by free-free radiation by charge Z is

LFF(Z) = 4πjff (32)

=
25πe6Z2

33/2hmc3

(
2πkT

m

)1/2

gffnen+ (33)

= 1.42× 10−27Z2T 1/2gffnen+ (34)

according to electromagnetism1.
Here, gff is called mean Gaunt factor, 1.0 < gff < 1.5.

1cf) Radiative Process in Astrophysics by Rybicki & Lightman
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3.5 Energy Loss by Collisionally Excited Line Radiation

Ions with energy level gaps ∼ kT such as O+,O++,N+ are important sources
of cooling.
Here, we consider electrons collide with ions and excite the level 1 to 2.
(energy gap χ = hν12)

definition of Ω

Excitation cross section of this process is

σ12(u) =:


πℏ2

m2u2

Ω(1, 2)

ω1
for

1

2
mu2 > χ

0 for
1

2
mu2 < χ

(35)

where ω1 is the statistical weight of the lower level.
Here we define collision strength Ω(1, 2).

The fact that σ ∝ u−2 reflects Coulomb focusing effect (quantum
scattering theory).
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3.5 Assumption to derive symmetry of Ω

Assume detailed balancing between excitation and deexcitation.

nen1u1σ12(u1)f(u1)du1 = nen2u2σ21(u2)f(u2)du2 (36)

Note again that σu means the volume of the cylinder through which an
electron goes.
Also, u1 and u2 satisfy energy conservation

1

2
mu2

1 =
1

2
mu2

2 + χ (→ u1du1 = u2du2) (37)

Then, we set another assumption : Boltzmann distribution

n2

n1
=

ω2

ω1
exp(−χ/kT ) (38)

Combining eq(36), (37),(38) and substituting f(u) ∝ u2 exp

(
−1

2
mu2/kT

)
,

19 / 35



3.5 Symmetry of Ω

σ12(u1)u
2
1 exp

(
−1

2
mu2

1/kT

)
=

ω2

ω1
exp(−χ/kT )σ21(u2)u

2
2 exp

(
−1

2
mu2

2/kT

)
(39)

ω1u
2
1σ12(u1) = ω2u

2
2σ21(u2) (40)

Thus, the deexcitation cross section is derived as

σ21(u2) =
ω1

ω2

u2
1

u2
2

σ12(u1) (41)

=
πℏ2

m2u2
2

Ω(1, 2)

ω2
(42)

Remembering the definition of Ω, we get

symmetry of Ω

Ω(1, 2) = Ω(2, 1) (Ω is symmetric) (43)
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3.5 Energy Loss by Collisionally Excited Line Radiation

The total collisional deexcitation rate is

nen2q21 = nen2

∫ ∞

0

uσ21(u)f(u)du (44)

= nen2

(
2π

kT

)1/2 ℏ2

m3/2

Υ(1, 2)

ω2
(45)

where, Υ is the velocity-space-averaged collision strength

Υ(1, 2) =

∫ ∞

0

Ω(1, 2;E) · exp(−E/kT )d

(
E

kT

)
, with E =

1

2
mu2

2 (46)

Also, we can calculate q12 with ease as

q12 =
ω2

ω1
q21 exp(−χ/kT ) (47)

Υ must be calculated with quantum mechanics.
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3.5 Relation fine-structure-Υs satisfy

Now we consider the transition from (S,L, J) to (S′, L′, J ′) (fine structure).
;J is coupled angular momentum (satisfies ”triangle rule”)

Υ(SLJ, S′L′J ′) = (collision strength from (S,L, J) to (S′, L′, J ′)) (48)

Υ(SL, S′L′) =
∑
J,J′

Υ(SLJ, S′L′J ′) (49)

E

mJ1
= −J1, · · · , J1

mJ2
= −J2, · · · , J2

mJ ′
2
= −J ′

2, · · · , J ′
2

mJ ′
1
= −J ′

1, · · · , J ′
1

|S,L, J,mJ⟩

|S′, L′, J ′,mJ ′⟩

⇑ Υ(SLJ, S′L′J ′)
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3.5 Relation fine-structure-Υs satisfy

In general, the summation of Υ(SL, S′L′) is complex.
If

S = 0, then |L− S| ≤ J ≤ L+ S → J = L.
L = 0, then |L− S| ≤ J ≤ L+ S → J = S.

In those cases, summation is simplified
∑
J,J′

=
∑
J ′

.

Assume that all collision strength from |S,L, J,mJ⟩ to |S′, L′, J ′,mJ ′⟩ are the
same, Υ(SLJ, S′L′J ′) ∝ 2J ′ + 1(degeneracy). Therefore, we get

relation between fine-structure-Υs

Υ(SLJ, S′L′J ′) =
2J ′ + 1

L+S∑
J ′=|L−S|

(2J ′ + 1)

Υ(SL, S′L′) (50)

=
2J ′ + 1

(2S′ + 1)(2L′ + 1)
Υ(SL, S′L′) (51)
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3.5 Example of the relation

example

Consider 1S → 3P (Notation; 2S+1LJ). The relations are

Υ(1S, 3P0) =
1

9
Υ(1S, 3P ) (52)

Υ(1S, 3P1) =
3

9
Υ(1S, 3P ) (53)

Υ(1S, 3P2) =
5

9
Υ(1S, 3P ) (54)

These relations suggest that the rate of the excitation is nearly independent
of the distribution of ions among 3P0,

3P1, and
3P2.

Usage of this relation is rather important in terms of technical reasons.
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3.5 Derivation of cooling rate

We can write down the detailed balancing between excitation, deexcitation,
and spontaneous emission

nen1q12hν12 = nen1q21hν12 + n2A21hν12 (55)

nen1q12 = nen1q21 + n2A21 (56)

Thus,

n2

n1
=

neq12
A21

[
1 +

neq21
A21

]−1

(57)

And therefore

cooling rate

LC = n2A21hν12 = nen1q12hν12

[
1 +

neq21
A21

]−1

(58)
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3.5 Property of the cooling rate LC

ne → 0

LC = nen1q12hν12

[
1 +

neq21
A21

]−1

→ nen1q12hν12 (59)

Explaining qualitatively, all collisionally excited electrons are immediately
deexcited by spontaneous emission.

ne → ∞

LC → nen1q12hν12
A21

neq21
=

q12
q21

n1A21hν21 (60)

=
ω2

ω1
e−χ/kTn1A21hν21 (using eq(47)) (61)

This result is natural considering Boltzmann distribution
n2

n1
=

ω2

ω1
e−χ/kT .
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3.5 More complex energy levels

Some ions (O++, N+ , etc) have more complex energy levels like 3P . In such
cases, the equilibrium equations are∑

j ̸=i

njneqji +
∑
j>i

njAji =
∑
j ̸=i

nineqij +
∑
j<i

niAij for ∀i (62)

And, cooling rate

LC =
∑
i

L
(i)
C =

∑
i

ni

∑
j<i

Aijhνij (63)

ne → 0, LC becomes a sum of terms like eq(59).

neqij >
∑
k<i

Aik, collisional deexcitation is not negligible.
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3.5 Critical density

critical density

nc(i) =
∑
j<i

Aij /
∑
j ̸=i

qij (64)

ne < nc(i), collisional deexcitation of level i is negligible.

ne > nc(i), it is not negligible.
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3.5 Energy Loss by Collisionally Excited Line Radiation
of H

H+ has no bound level, no emission.

H0 is not so abundant, but may affect the radiative cooling in nebula.

Important excitation from the ground 12S

22P 0. Lyα with hν = 10.2eV
22S. 2γ decay with hν′ + hν′′ = 10.2eV

Cross section does not vary as u−2. It has resonance and peak structure .

Υs vary fairly slowly.
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3.5 Resulting Thermal Equilibrium

Including all discussed above, the resulting thermal equilibrium is

G = LR + LFF + LC (65)

In ne → 0, G,LR, LFF, LC are all proportional to ne and to some ion
densities nion.
So, we can denote (G,LR, LFF, LC) = nenion(g, lR, lFF, lC), where
(g, lR, lFF, lC) don’t depend on ne or nion.
Then, we get

g = lR + lFF + lC (66)

Therefore, resulting T does not depend on ne or nion.

In ne > nc(i), collisional deexcitation is not negligible.
→ the cooling rate is decreased.
→ the equilibrium temperature is increased.
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3.5 Example: typical HII region

We set

n(O)/n(H) = 7× 10−4, n(Ne)/n(H) = 9× 10−5, n(N)/n(H) = 9× 10−5

O, Ne,N : 80% is singly ionized, 20% is doubly ionized.

n(H0)/n(H) = 1× 10−3

The resulting cooling rates are shown in figure 3.2

dependence of T

kT ≪ χ, the contribution is small.
kT ∼ χ, it increases rapidly.
kT ≫ χ, it decreases slowly.

low T : O++ has the greatest contribution.

high T : O+ has the greatest contribution.

The contribution of H0 is small in all T .
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3.5 Figure 3.2
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3.5 Example: typical HII region

(effective heating rate) = G− LR = LFF + LC (67)

In figure 3.2, intersection of dashed curve(G− LR) and solid
curve(LC + LFF) is the solution of equilibrium, and its typical value is
T ∼ 7000K.

At high ne, cooling is suppressed by collisional deexcitation and result in
T well above that at low ne.
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Appendix: Proof of the lemma

EP2
[X]− EP1

[X] =
1

Z2

∫
R
xf(x)g(x)dx− 1

Z1

∫
R
xf(x)dx (68)

=
1

Z1Z2

[
Z1

∫
R
xf(x)g(x)dx− Z2

∫
R
xf(x)dx

]
(69)

=
1

Z1Z2

[∫
R2

xf(x)g(x)f(y)dxdy −
∫
R2

xf(x)g(y)f(y)dxdy

]
(70)

Regarding double integration∫
R2

f(x)f(y)[xg(x)− xg(y)]dxdy =: I (71)

we use symmetry trick

I =
1

2

∫
R2

f(x)f(y)[xg(x)− xg(y) + yg(y)− yg(x)]dxdy (72)
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Appendix: Proof of the lemma

I =
1

2

∫
R2

f(x)f(y)(x− y)(g(x)− g(y))dxdy (73)

If g(x) is increasing,

x− y > 0 ⇒ g(x)− g(y) > 0 (74)

and therefore

I > 0 (75)

EP2
[X]− EP1

[X] =
I

Z1Z2
> 0 (76)

EP2
[X] > EP1

[X] (77)

■
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