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@ Refer to original AGNAGN textbook when discussing tables or figures.
o I've tried to fill in every gap I found in original textbook.

o Therefore, this slide consists of 60% original contents and 40% my own
interpretation, derivation , or explanation.

Since 40% my own interpretation may include some incorrect points, I
would appreciate it if you tell me any mistake or suspicious point.

2/35



3.1 introduction

e heating : photoionazation (G)
e cooling : recombination(L), cooling by line emission > free-free emission

In the equilibrium,

G — L = (line) + (free-free) (1)
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3.2 Input by Photoionization

When an ionizing photon (hv) is absorbed, an electron is produced with

kinetic energy imu? In this process, energy conservation is

1
hv = hyg + imu2, hvy = 13.6eV (ionizing energy) (2)

By integrating this kinetic energy, total energy input by photoionization is
1
G(H) :/ # (photoelectron) x imu2 (3)
10012z1ng
:/ n(H®)# (photon)h(v — vg)a, (H)dv (4)
vo

where, n(H°): number density of H, a, (H°): cross section.
Assume that the H° gas is under the radiation field J, (intensity),

4nJ,
5
" (5)

#(photon) =
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3.2 Definition of T;

Therefore, the total energy input (per unit volume, unit time) is

GH) = /OO n(HO)%h(V — vp)a, (H)dv

0

Assume ionization equilibrium (number of H® is balanced)

*AnJ,
n(HO)/ ZV a,dv = npneozA(HO,T)
Vo

the total energy input is written as follows

> 421{” h(v — vg)a, (H®)dv

Yo

G(H) = nen,aa(H°,T)

foo 4 J,

vo hv

a,dv

3
=: NeNpOia (HO, T)§kTi



3.2 Interpretation of T;

RHS of eq(9) is the definition of T}, which reflects the ”feeling” that eq(8)

represents the ”average” of §mu2 and it corresponds to internal energy.

simple example

Consider a simple case; J, = B, (T}), kT, < hvgy,a, oc v™3.

One can numerically calculate the integrations, and get T; ~ T,.
So, this case is one evidence to regard T; as the temperature of
photoelectrons.
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3.2 Hardening(7; depends on the distance from the star)

We can derive the spatial distribution of Tj;.
According to radiative transfer, J,(r) = J,(0)e™™ = J,(0)e " "*".
Therefore,

[0 4 l0) o =navrp(y — yy)a, dy

3 17 hv

—kT;(r) = = 10

M O )

Then we use an inequality (next slide) and we get
o0 AmSu(r) p—naydrp(y, a,dv
§kTi(r +dr) = f”o hv ( ) > §kTi(r) (11)
2 foo 477;11/(7”) e—na,,draudl/ 2
Vo v

Note that a, is known to be decreasing (by Fermi’s golden rule), so e~"% 4" is
increasing.
So, at larger distance from the star, mean energy of photoelectrons

3
QkTi (r) becomes larger.
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3.2 Lemma (redistribution of probability)

-~ Lemma(redistribution of probability) ~
X:random variable
Pile) = f(@)/2. 7= [ f@yto (12)
Pa(e) = f@)g(a)/Za. 72 = [ f@oayts (13)

If g(z) is increasing, then

EPI [X] < EPz [X] (14)
- J
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3.2 Hardening(7; depends on the distance from the star)

Qualitative explanation of this hardening
e a,: smaller frequency is effectively absorbed.
e high energy (high frequency) photons penetrate longer distance.

o Therefore, mean energy (7;) at larger r becomes higher.
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3.3 Energy Loss by Recombination

1
When an electron falls into a quantum state (n, L), its kinetic energy —mu? is

2

1
lost. By taking the average of 3™ in velocity space,

/ %muQUnL(HO, T)uf(u)du
0

where, o, 1: cross section , f(u): probability density (often
Maxwell-Boltzmann distribution is used).
Note that o, - v means the volume of cylinder, and

Onr - u X f(u)du = #(recombine with velocity u)

u X 1unit time

(15)
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3.3 Energy Loss by Recombination

Suming up mean energies (15) over quantum states (n, L), total energy loss by
recombination is

Lr(H) = neny,kTBa(H°, T) (17)
where
Ba(H,T) = iﬁn(HOaT) = i;i::ﬁnL(HovT) (18)
with 7 o
Bnr(H, T) = kiT /OOO uanL(HO,T)%muzf(u)du (19)

Note that the denominator kT of eq(19) is just for making it dimensionless.
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3.3 Inequality between T T;

Since 0,1, oc u2, electrons with lower kinetic energy are likely to be captured.
Therefore,

3
(mean captured energy) < (mean electron energy) —  BakT < ikT (20)

In a pure H nebula that had no radiation losses, the thermal equilibrium is

G(H) = Lr(H) (21)
nenpyaa(H, T)%kTZ— = nenyBa(HO, T)ET (22)
ngi = BA(HY, KT < ng (23)

Therefore, we get T; < T.
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3.3 Decomposition of G, Ly

In general, the radiation field J,, consists of stellar radiation and diffuse
radiation (J, = Jus + Juq). So, we can rewrite G(H) as follows

G(H) _ /oo n(HO)47T(JV;L:_ J]/d)

0

h(v — vp)a, (H)dv =: G4 + Gy (24)

Also, we can decompose Lg(H) as follows,

Lr(H) = nenykT(8p + 1), where fp=> B, (25)

n=2

Note that 84 = 8 + 51.
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3.3 On-the-spot approximation

Photon emitted during a recombination to n = 1 level is instantly ab-
sorbed by a nearby spot. Energy gain by J,4 and energy loss by £, can
simply be omitted.

Using this approximation,
o 4 d,,
Gors(H) =G, = / n(HO)

0

h(v — vo)a, (H®)dv (26)

v
[ 4’;{{/’“ h(v — vp)a, (H®)dv

Vo
f:}o 4rdvs g, (HO)dv

= nenyag(H, T) (27)

and

Lots(H) = nen, kT (H, T) (28)
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—13.6eV /n?

3.3 Rough illustration of on-the-spot approximation

\AVAVA VRN

?1 ~ Jl/d
NNANNN
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3.3 Effect of He

The generalization to include He.

G = G<H) + G(He>’ Lg = LR<H) + LR(He) (29>
where
f:; AL h(v — vo)a, (He®)dv
G(He) = nen(He o (He?, 1) }VT 421{" a, (He%)dv (30)
and
Lr(H) = nen(HeT)ET B4 (He?, T) (31)

Contributions of other atoms are much less since both G and Ly are
proportional to density n.
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3.4 Energy Loss by Free-Free Radiation

The rate of cooling by free-free radiation by charge Z is
LFF(Z) = 47ijf

_ Prebz? (omkT\'?
©332hme3 . m giEneT+

=1.42 x 10727 22T 2 ggnen.,.

according to electromagnetism?.
Here, gg is called mean Gaunt factor, 1.0 < gg < 1.5.

Lcf) Radiative Process in Astrophysics by Rybicki & Lightman
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3.5 Energy Loss by Collisionally Excited Line

Tons with energy level gaps ~ kT such as OT, 0" NT are important sources
of cooling.

Here, we consider electrons collide with ions and excite the level 1 to 2.
(energy gap x = hv12)

Excitation cross section of this process is

wh? Q(1,2) 1
oM for —mu® > x
012(’u) = mau w1 % (35)
0 for §mu2 <X

where w; is the statistical weight of the lower level.
Here we define collision strength (1, 2).

The fact that o o< u=2 reflects Coulomb focusing effect (quantum
scattering theory).

18 /35



3.5 Assumption to derive symmetry of €2

Assume detailed balancing between excitation and deexcitation.

NeN1U1012 (ul)f(ul)dul = NeN2U2021 (UQ)f(’U,Q)dUQ (36)

Note again that ocu means the volume of the cylinder through which an
electron goes.
Also, u1 and us satisfy energy conservation

1 1
imuf = imug +x (= udu; = updus) (37)

Then, we set another assumption : Boltzmann distribution

%) w2
22 = 22 exp(—x/kT
"2 = 2 cxp(—x/kT) (33)

1
Combining eq(36), (37),(38) and substituting f(u) oc u? exp (—QmuQ/k'T)7
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3.5 Symmetry of 2

1 1
o1 (uq )u? exp ——mu2/kT | = ﬂexp —x/kT)o21(us u? exp ffmug kT
! 21 wy 2 2

(39)
wlufau(ul) = WQU%O'Ql(Ug) (40)
Thus, the deexcitation cross section is derived as
2
w1 ul
= —=— 41
o21(u2) s u% 012(uy) (41)
2 Q1,2
— 7T2h 5 ( ) ) (42)
m2us W
Remembering the definition of €2, we get
Q(1,2) =Q(2,1) (9 is symmetric) (43)
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3.5 Energy Loss by Collisionally Excited Line Radiation

The total collisional deexcitation rate is
o
NeNagol = nenz/ uo (u) f(u)du
0

B 27\ K2 Y(1,2)
= NeN2 ﬁ m3/2 W

where, T is the velocity-space-averaged collision strength

e E 1
T(1,2) = / (1,2, E) ~eXp(—E/k:T)d(kT>, with FE = §mu§
0

Also, we can calculate g5 with ease as
w2
q12 = —qa1 exp(—x/kT)
w1

T must be calculated with quantum mechanics.

(46)
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3.5 Relation fine-structure-Ys satisfy

Now we consider the transition from (S, L, J) to (S’, L', J’) (fine structure).
;J is coupled angular momentum (satisfies ”triangle rule”)

Y(SLJ,S'L'J") = (collision strength from (S, L, J) to (S’,L',J")) (48)

T(SL,S'L') = Y(SLJ.S'L'T) (49)
J,J!

! !
Mgy = =S s

|S/,le lemJ’>

A T(SLJ,S'L'J")

. 7J2
|SaL7J7mJ>
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3.5 Relation fine-structure-Ys satisfy

In general, the summation of Y(SL,S'L’) is complex.
If

0 §=0,then|L—S|<J<L+S—J=L.

e L=0,then |[L-S|<J<L+S5—J=5.
In those cases, summation is simplified Z = Z

JJ

Assume that all collision strength from |S, L, J,m ) to |S', L', J',m ) are the
same, T(SLJ, S'L'J") < 2J’ + 1(degeneracy). Therefore, we get

20 + 1
Y(SLJ,S'L'J) = HS‘] s T(SL,S'L’) (50)
> @I +1)
J'=|L—S|
2J +1
_ i T(SL,S'L) (51)

25 + 1)(2L’ + 1)
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ample of the relation

example

Consider 1S — 3P (Notation; 2*1L ;). The relations are

(1S, Py) = %T(15,3P) (52)
Y('S,%P) = gr(15,3p) (53)
T('S,3P) = gT(15,3P) (54)

These relations suggest that the rate of the excitation is nearly independent
of the distribution of ions among 3Py, 3Py, and 3 P.

Usage of this relation is rather important in terms of technical reasons.
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3.5 Derivation of cooling rate

We can write down the detailed balancing between excitation, deexcitation,
and spontaneous emission

nen1qizhvia = nenigaihvia + naAsihvaz (55)
NeN1qie = NeNiqer + N2 Ao (56)
Thus,
n2 Neq12 NeGo1 |
1+ 57
ny Aoy { Aoy ] (57)
And therefore
" _
Lc = ngAsihvia = nenigizhvia [1 + 2221} (58)
1
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3.5 Property of the cooling rate L¢

en.,—0

Ned21
A21

1
Lo = neniqizhrne [1 + } — NeNn1qr2hvia (59)

Explaining qualitatively, all collisionally excited electrons are immediately
deexcited by spontaneous emission.

@ Neg — OO
A
Lc — nenyqiohvyo 2 — q£n1A21hV21 (60)
Ned21 q21
= 2% Ay huy (using eq(47))  (61)
wy

. . - . . n2 w2 _
This result is natural considering Boltzmann distribution — = —=e~X/*T,
ni w1
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3.5 More complex energy levels

Some ions (OT*, NT | etc) have more complex energy levels like 3P. In such
cases, the equilibrium equations are

Z T jNeqji + Z TLjAji = Z niNeqij + Z TllAU for Vi (62)
J# J>i J#i J<i
And, cooling rate
Lo = Z L(z) = Z?’Li Z Aithij (63)
i i j<i
e n, — 0, Lo becomes a sum of terms like eq(59).

@ nqij > Z A, collisional deexcitation is not negligible.
k<i
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3.5 Critical density

ne()) =Y Ay /Y ais (64)

J<i J#i

@ n. < n.(i), collisional deexcitation of level ¢ is negligible.

@ n. > n.(i), it is not negligible.
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3.5 Energy Loss by Collisionally Excited Line Radiation

of H

H™ has no bound level, no emission.

HO is not so abundant, but may affect the radiative cooling in nebula.
Important excitation from the ground 125

o 2°P°. Lya with hv = 10.2eV
o 225. 27 decay with hv' + hv'”" = 10.2eV

Cross section does not vary as u 2. It has resonance and peak structure .

Ts vary fairly slowly.

Table 3.16
Effective collision strengths for H 1

T(K) 128,23 15 B 128,329 125,32p° 125:32D
10.000 0.29 0.51 0.066 0.12 0.063
15.000 0.32 0.60 0.071 0.13 0.068
20,000 0.35 0.69 0.077 0.14 0.073

Anderson, H., Balance, C. P, Badnell, N. R., & Summers, H. P. 2000, J.Phys.B, 33, 1255.
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3.5 Resulting Thermal Equilibrium

Including all discussed above, the resulting thermal equilibrium is

G=Lgr+ Lrr + L¢ (65)

e Inn, — 0, G, Ly, Lpr, Lc are all proportional to n, and to some ion
densities 1oy .
So, we can denote (G, Lg, Lrr, Lc) = nenion(9, g, lrr, lc), where
(9,1lr,lrF,lc) don’t depend on n. or Nigy.
Then, we get

g=Ir+Ilrr+Ic (66)

Therefore, resulting T' does not depend on 7, Or Njey.

e In n. > n.(i), collisional deexcitation is not negligible.
— the cooling rate is decreased.
— the equilibrium temperature is increased.
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ample: typical HII region

We set
e n(0)/n(H) =7 x 1074, n(Ne)/n(H) =9 x 1075, n(N)/n(H) =9 x 1075
e O, Ne,N : 80% is singly ionized, 20% is doubly ionized.
o n(H%)/n(H)=1x 1073

The resulting cooling rates are shown in figure 3.2

o dependence of T'

o kT < x, the contribution is small.
o kT ~ x, it increases rapidly.
o kT > ¥, it decreases slowly.

@ low T: OT™ has the greatest contribution.
@ high T: OT has the greatest contribution.

@ The contribution of H? is small in all 7.
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3.5 Figure 3.2

102

102

Heating or cooling rate/n,n, (erg cms ")

Figure 3.2
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12,000
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ample: typical HII region

(effective heating rate) = G — Lr = Lyr + L¢ (67)

e In figure 3.2, intersection of dashed curve(G — Lg) and solid
curve(Le + Lyp) is the solution of equilibrium, and its typical value is
T ~ 7000K.

e At high n., cooling is suppressed by collisional deexcitation and result in
T well above that at low n,.
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Appendix: Proof of the lemma

B X] - En[X] = - [ af@g(oite - 5 [ ap@ys .
1
" 7.2, {Zl /sz (@)g(z)dz — 25 /R af (x)dm] (69)
1
— 77 {/}W rf(x)g(x)f(y)dzdy — /Rz xf(x)g(y)f(y)dxdy}
(70)

Regarding double integration
. f@)f()lzg(z) — xg(y)ldady = 1 (71)
we use symmetry trick

I= % - @) f()[zg(z) — z9(y) + yg(y) — yg(z)|dzdy (72)
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Appendix: Proof of the lemma

and therefore

>0 (75)
Ep,[X] - Ep, [X] = ZIIZQ =0 (76)
Ep,[X] > Ep, [X] (77)
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