Sec.10.3.2 - End of Sec. 10

McLean seminar 2024.11.22

10.3.2 Image enhancement

1. Image Display Methods

- Pseudo 3D Representation
 - Images appear three-dimensional.
- Contours or Isophotes
 - Displays brightness as contour lines.
- 1D Cross-Sections
 - Slices or profiles of the image.

2. Image Filtering Techniques

- Low-Pass Filter

Purpose: Smooths the image by removing fine details.Effect: Reduces noise, creates a soft or blurred appearance.

- High-Pass Filter

Purpose: Enhances fine details by emphasizing edges.Effect: Increases sharpness but amplifies noise.

- Block Smoothing

•Averages pixel values within an n×n block.

- Gaussian Smoothing

•Uses a Gaussian curve for weighted averaging.

- Median Filtering
 - •Removes outliers (extreme pixel values).
 - •Replaces with the median of neighboring pixels.

10.3.2 Image enhancement

3. Unsharp Masking

- Process:
 - Smooth image with a low-pass filter.
 - Subtract the blurred version to enhance sharpness.
- Effect: Highlights fine details while removing low-frequency features.

4. Image Restoration

- Deconvolution
 - Corrects blur caused by the instrument's point spread function.
- Pixel Shifting
 - Moves pixels with interpolation for non-integer shifts.
- Bad Pixel Correction
 - Replaces defective pixels using neighboring data.

5. Advanced Filters

- Edge-Enhancing Filters
 - Sobel, Laplacian filters emphasize boundaries.
- Bas-Relief Effect
 - Produces 3D-like effects by highlighting brightness gradients.

10.4 Image restoration

1. What is Image Restoration?

- Restoration: Corrects distortions in raw images (e.g., blurring, noise).
- Reconstruction: Creates an image from complex, encoded data (e.g., interferometric data)
- Widely used in astronomy (UV-visible-IR images, Hubble Space Telescope).

2. Key Restoration Methods

- 2-1. Richardson-Lucy Deconvolution
 - 1. Iterative algorithm to enhance sharpness.
 - 2. Suitable for photon-counting detectors (e.g., CCDs).
- 2-2. Maximum Entropy (ME)
 - 1. Balances noise reduction and sharpness.
 - 2. Prevents overfitting by assuming flat regions.
- 2-3. Pixon-Based Technique
 - 1. Adaptive restoration using variable-sized "pixons."
 - 2. Reduces artifacts and improves clarity.

3. Bayesian Approach

- Bayes' Theorem: Combines data, prior knowledge, and noise models.
- Key Terms:
 - Likelihood: How well the data fits the model.
 - Image Prior: Assumptions about the image before data analysis.

10.4 Image restoration

4. Challenges in Image Restoration

4-1. Noise Amplification

- Overfitting creates artificial speckles.
- 4-2. Ringing Effect
 - Bright and dark rings appear near sharp edges.
- 4-3. Sensitivity to PSF Errors
 - Minor inaccuracies in the PSF can affect results.

5. Practical Tools and Applications

- Richardson-Lucy Algorithm
 - Available in STSDAS/IRAF for Hubble data processing.
- Tiny Tim Software
 - Simulates PSF for the Hubble Space Telescope.
 - Applications:
 - Revealing faint objects
 - Improving observational data

10.5 Summary

1. Use of Computers in Astronomy

- Wide Applications for Astronomers:
 - Controlling telescopes and instruments: Utilizing fast hardware and Digital Signal Processors (DSPs).
 - Processing and displaying data with powerful workstations or PCs.

2. Key Software Tools

- Programs developed for image analysis and data processing:
 - IRAF, AIPS, STSDAS, STARLINK, MIDAS (community-developed).
 - IDL, a popular commercial software.

3. Standard File Format: FITS

- FITS (Flexible Image Transport System) is the standard format for astronomical images.
- FITS Liberator: A tool enabling Adobe Photoshop to open FITS images.

4. Image Processing and Restoration

- Enhancing images for better visualization:
 - Stretching: Adjusting brightness to highlight faint details.
 - Filtering: Removing noise or emphasizing specific features.
 - False Coloring: Adding colors to emphasize structures.
- Image Restoration Techniques:
 - Deconvolution: Mathematically correcting image blurring.
 - Bayesian-based methods: Recovering images with known optical limitations like diffraction.