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9.7 Spectroscopy

• Spectroscopic applications put the most stringent requirements on 
detectors to achieve the lowest possible noise performance.

• Diffraction gratings are mainly used to disperse light in large 
astronomical spectrographs, although prisms with transmission 
gratings are also frequently used. 



9.7 Spectroscopy

• Spectroscopic calibrations proceed in much the same way as with 
imaging.

• A flat-field is required to remove optical interference effects caused by 
the near-monochromatic light and variations in the thickness of 
thinned backside-illuminated CCDs.

• Bias frames must precede the derivation of the flat-field, but now, due 
to the much weaker signals and longer integrations, dark current may 
be more dominant. 

• Many dark frames may need to be averaged and subtracted from the 
object frame. 



9.7 Spectroscopy
• Wavelength calibration deciding the relationship between pixel number 

and wavelength is done by using arc lamp (emission-line) spectra that 
contains numerous lines with accurately known wavelengths.

• In the NIR, using the numerous, sharp OH night-sky lines is convenient.

• Atmospheric extinction corrections and correction to absolute flux 
levels are accomplished by comparing the observed spectrum to that of 
a flux standard, such as A0 V stars not located far away and therefore 
not reddened by dust and white dwarfs with almost featureless spectra.

Cvetojevic et al. (2009) Schmidt et al. (2003)



9.7 Spectroscopy
• A summary of the key steps is as follows: 

(1) Identify the direction of dispersion (is increasing wavelength the same as 
increasing pixel numbers?) 

(2) Interpolate over dead pixels or columns because these outliers may ruin the 
subsequent steps but record these locations to remember there was no real data in 
those pixels. 

(3) Sum up and normalize to unity the flat-fields. Flat-fields are sometimes taken 
with the spectrograph slit wide open if that is an option. In this way, the orders 
overlap considerably giving a uniform illumination on the CCD when viewing a 
quartz lamp illuminating a white screen on the inside of the dome. 

(4) Divide the observed stellar spectra by the flat-field to remove pixel-to-pixel 
sensitivity variations. 



9.7 Spectroscopy
(5) Some software packages like IRAF require that you observe a bright star to some 
extent in order to define the positions of the orders across the CCD. The program 
(e.g., “ptrace”) will then know where to find spectra. 

(6) Extract the rectangular subsets of CCD pixels corresponding to the stellar 
spectrum. Do the same for the arc lamp using the normal slit width and quartz lamp 
exposures. In IRAF this is done with a program called “apsum”. 

(7) Divide the flat-fielded stellar spectra by the “white-light” spectrum obtained with 
the normal slit and quartz lamp. This white light spectrum must itself be flat-fielded 
with the open-slit flat-field before this division. The purpose of this step is to remove 
interference fringe effects rather than pixel-to-pixel variations in sensitivity. 

(8) Identify emission lines in the arc lamp used as a wavelength calibrator. The most 
commonly used lamp is a thorium-argon lamp spectrum. This is a painstaking step, 
but an important one if accurate transformations from pixels to wavelengths are 
required. 



9.8 Polarimetry

• Polarimeter rotates in the beam, so dust spots and other artifacts 
cannot be flat-fielded with just one waveplate orientation.

→A set of flat-fields corresponding to different positions of the 
polarimeter’s waveplate are needed.

• If a half-waveplate is used to determine the linear polarization 
components Q/I = p cos 2Θ and U/I = p sin 2Θ, then Q/I and U/I can 
be measured by the difference in counts at four waveplate rotations 
from an arbitrary starting point. 

• Here, I is the total intensity, p is the percentage or fractional linear 
polarization, and Θ is the direction of vibration of the electric vector of 
the linearly polarized component.



9.8 Polarimetry

• Stars or objects of known polarization like the Crab Nebula should be 
observed to verify the efficiency of the measurement and determine 
any scale factor. 

• By observing completely unpolarized sources we can discover the 
“instrumental polarization” inherent in the system. The instrumental 
values of Q and U should be subtracted before p and Θ are calculated.

Bucciantini et al. (2023)

Credit:European Southern 

Observatory (ESO)



9.9 Signal-to-noise calculations

• The simplest approach to analyzing a CCD image is to construct a  
“final frame” by subtracting dark current and normalize with a flat-field. 

• For infrared arrays, the night sky is often used as the flat-field source, so 
SKY FRAME can be used instead of FLAT FRAME in the equation.

• Here, these noise sources are taken into account:

 (1) readout noise, R electrons 

 (2) photon (Poisson) noise on the signal (S) from the object 

 (3) photon (Poisson) noise on the signal (B) from the sky background 

 (4) shot noise on the dark-current signal (D)



9.9 Signal-to-noise calculations

• The number of OBJECT, SKY/FLAT, and DARK frames combined or 
“co-added” to form the FINAL FRAME are not necessarily equal.

• But for simplicity, we assume that the normal practice pertains of 
keeping the same exposure time (t) for each image. 

• Suppose we have nO OBJECT FRAMES, nB SKY BACKGROUND or 
FLAT FRAMES, and nD DARK FRAMES and let

 



9.9 Signal-to-noise calculations

• Then, when a source is covering n pixels on the CCD, we can estimate a 
total signal-to-noise ratio (S/N) of 

• S : the total object signal summed over n pixels (i.e., S = Σ (Si))

• ur : the average, over n pixels, of any residual error due to failure in the 
flat-field

• B, D, and f are different from pixel to pixel. 



9.9 Signal-to-noise calculations

• The terms in the denominator of S/N (↓) can be understood as follows.

• (1) is due to the residual non-uniformity (ur) .

• (2) is the Poisson noise in the source signal itself. 

• (3) is the background and dark-current Poisson noise in quadrature with 
the readout noise in the raw source frame.

• (4) is the error due to subtracting a dark frame from the object frame. 
The more dark frames, the smaller εD and the less significant this term.

(1) (2)
(3) (4) (5) (6)



9.9 Signal-to-noise calculations

• (5) comes from the application of the SKY/FLAT correction and (6) is 
the result of dark subtraction for the SKY/FLAT term. The more 
SKY/FLATS that are used the smaller εB.

• The additional scaling factor of (1+f )2 arises when the object frame is 
divided by the flat-field and the ratio renormalized by multiplying by the 
mean of the flat-field.

(1) (2)
(3) (4) (5) (6)



9.9 Signal-to-noise calculations

• Suppose you observe a point-like object that has a seeing disk of diameter 
θFWHM [arcsec], corresponding to the full width at half maximum intensity 
(FWHM), with a CCD whose pixel has a side length θpix [arcsec] , then 
the number of pixels covered by the star's image is approximately 

   and the summations must be taken over npix pixels to estimate the S/N.

• If the object is extended and its angular size is much larger than θFWHM , 
then it is more convenient to deal with “surface brightness” in magnitudes 
per square arcsecond, and so npix = 1 and each pixel is treated separately.



9.9 Signal-to-noise calculations

• In the ideal case with accurate calibration data so that εB and εD are very 
small, and if ur , the residual non-flatness, is negligible, then S/N is

• There are two further simplifying cases: 

typo for D?

1. Background-limited or “sky-limited”: 

B >> (D + R2/t) and S << B 

2. Detector noise-limited : 

R2/t >> (B + D) and a weak signal S



9.9 Signal-to-noise calculations

Background-limited example: 

Suppose the total source (S) is only 1% of the brightness of the sky in a single pixel 
and the source is spread over 4 pixels. S/N = 1 is required to just barely detect this 
source. Therefore, BT = 40,000 photoelectrons. If the sky background (B) gives 
about 400 electrons/s per pixel, then this observation will take 100 s. 

Detector noise-limited example:

In a high-resolution spectrograph the background plus dark current is 0.1 
electrons/s/pixel, and so for t = 1,000 s we are formally readnoise-limited if R2/t > 
0.1 or R2 > 100 (i.e., if R is larger than 10 electrons). 



9.9 Signal-to-noise calculations
• The highest signal-to-noise ratios are obtained when 

(a) sufficiently accurate calibration frames are obtained 

(b) the readout noise and dark current are as small as possible 

(c) the on-chip integration time is as long as possible

(d) quantum efficiency and telescope area are as large as possible. 

• The estimation of the power [W] collected by a telescope of area Atel 
[cm2] in a wavelength interval of Δλ [μm] from a source of apparent 
magnitude m (below the Earth's atmosphere), transmitted by an optical 
system of efficiency τ (<1) onto a CCD detector of quantum efficiency 
η (<1) is 

where Fλ (0) is the flux [W cm-2 μm-1] from a zeroth magnitude standard 
star above the atmosphere.



9.9 Signal-to-noise calculations



9.9 Signal-to-noise calculations

• The transmission factor τ is the product of all the transmission od 
reflectance factors in the system.

• For example, assume two telescope mirrors with a 95% reflectance 
each, six lenses with 96% transmission each, and a filter with 80% 
transmission, then the total transmission is 

• A single photon has energy hc/λ , so the photoelectron detection rate is 

   



9.9 Signal-to-noise calculations

• Dividing S (λ) by g [e-/DN] gives the observed signal rate in [DN/s], 
and if we set this rate at 1 DN/s then we can derive the corresponding 
magnitude mzp which is the “zeropoint” of the instrument scale.

• We can also get mzp by observing a standard star of known magnitude.

• Having obtained mzp by observations we can then derive the product 
τη which describes the system efficiency in the given passband: 

   



9.9 Signal-to-noise calculations

Example: 

Suppose in the K’-band (λ = 2.125 μm, Δλ = 0.35 μm) the zeropoint is 
observed to be 20.4 on a telescope with an area of 72,236 cm2 using a 
camera with a gain of 25 electrons/DN. Taking Fλ(0) = 4.34×10-14 W 
cm-2 μm-1 gives 

which corresponds to τη =0.31 (or 31%).

   



9.9 Signal-to-noise calculations

• The signal from the sky or background (which includes thermal 
emission from the telescope at infrared wavelengths) depends on many 
things like temperature and the amount of moonlight.

• To quantify the background a simple approach is to use the same form 
as before.

• In the thermal infrared, Fλ can be replaced with the Planck function 
B(λ) and an emissivity factor ε. 



9.9 Signal-to-noise calculations

• B is proportional to 𝐴tel𝜃pix
2  and

where dpix is the pixel size of the detector and ( f / # )cam is the focal ratio 
of the camera system.

• Therefore, for a given camera system, the background is independent 
of telescope diameter Dtel and depends only on focal ratio ( f / # )cam .

• Many optical telescopes have focal ratios of about f / 8 whereas 
infrared telescopes use f / 36 or larger to reduce the background. 



9.9 Signal-to-noise calculations

Example:

Consider a CCD camera with τ = 0.5 and η = 0.5 at a wavelength of 
0.54 μm in the middle of the V band with a filter passband of Δλ = 0.1 
μm on a 4 m class telescope (i.e., a 4 m diameter primary mirror with a 
1 m Cassegrain hole in its center). With the appropriate value of Fλ (0) = 
3.92×10-12 W cm-2 μm-1 ,

so that for m = 17 we obtain 5,000 electrons/s whereas for the extremely 
faint sources at m = 27, we detect only 0.5 electrons/s. 



9.9 Signal-to-noise calculations

• A useful expression for predicting the “limiting magnitude” of an array 
camera in the background-limited or sky-limited case is here.

This equation is derived from 

• If the “limit” corresponds to S/N = 1, the limiting magnitude is 



9.9 Signal-to-noise calculations

Example:

A camera with a gain of 10 electrons/DN and a zeropoint of mzp = 18
forms a star image across 5 pixels with an average background of 200 
electrons/ s/ pixel. What is the limiting magnitude for a 1-hour exposure? 

As we are assuming the background-limited case, we are not concerned 
with the way the exposure has been broken up (n0 = 1) ; all that matters is 
T = t = 3,600 s and S/N = 1: 

In reality, S/N calculations are often more complex than presented here 
because star images are not sharp-edged, filter transmissions are not 
simply represented by a wavelength interval, and the stellar energy 
spectrum is not the same as that of Vega. 



9.10 Summary

• You can routinely determine important parameters in a CCD, such as 
quantum efficiency, readout noise, uniformity (flat-field), linearity, and 
gain by following the steps from quantum detection of photons to 
evaluation of  fluxes, magnitudes, and signal-to-noise ratios by 
processing data frames. 

• Good flat-field correction enables us to detect too faint sources to be 
apparent in the raw image.

• Relative photometry to an accuracy of 1/1000 mag is possible.

• How to calculate signals and backgrounds for a CCD and a formula 
for the S/N often called the “CCD equation” are described.

• When all the steps are followed, CCDs and infrared detectors become 
very powerful in photometers and spectrographs. 
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