## AGNAGN Seminar Sec7.3-7.5

Misato Fujii

### 7.3 Dust within HII Regions

 $\cdot$  dust is present within HII regions

- $\rightarrow$  "absorption" features in nebula
  - $\cdot$  cut down the nebular emission and starlight from beyond the nebula
- globules: very dense small features
  - · elephant-trunk or comet-tail structures: other absorption features at the edges of nebulae
  - $\cdot$  appear to be almost completely dark

⇒have a large optical depth at the observed wavelength and are on the near side of the nebula

- $\cdot$  it's difficult to study absorption features quantitatively
  - $\leftrightarrow$  can estimate their optical depths
    - $\rightarrow$  the amount of dust can be estimated if its optical properties are known
    - $\cdot$  if the gas-to-dust ratio is known, the total mass in the structure can be estimated



#### globules

### Observation of continuum

#### $\cdot$ dust particles scatter the continuous radiation of the stars in nebulae

- →observable nebular continuum
  - must be made with sufficient spectral resolution or filters to avoid the strong nebular lines
  - $\cdot$  measurements of an HI recombination line are made at the same time

 $\cdot$  the expected nebular atomic continuum caused by bound-free and free-free emission can be calculated from the intensity (Section 4.3)

#### $\rightarrow$ dust-scattered continuum = observed continuum - atomic contribution

• dust-scattered continuum is considerably larger than the atomic continuum in most nebulae

- ↔ observational data can't be interpreted in a straightforward and unique way
  - $\boldsymbol{\cdot}$  due to the complexity of geometry and spatial structure of nebulae
    - amount of scattered light depends strongly upon these factors

### Principle of observational data

- $\boldsymbol{\cdot}$  principles involved with observation
  - $\cdot$  treat the simplified problem of a spherical, homogeneous nebula illuminated by a single central star

 $=\frac{a_{\lambda}n_D C_{\lambda}L_{\nu}}{8\pi^2}\cdot\frac{1}{h}\cos^{-1}\frac{b}{r_0}$ 

- $\cdot$  suppose that the nebula is optically thin
  - $\rightarrow$  flux of starlight within the nebula:  $\pi F_{\nu} = \frac{L_{\nu}}{4\pi r^2}$ .
    - $\cdot$   $L_{
      m 
      u}$ : luminosity of the star per unit frequency interval
    - $\cdot$  r: distance from the star

 $\rightarrow$ emission coefficient per unit volume per unit solid angle due to scattering:

- $\cdot$   $n_D C_\lambda$ : extinction cross section per unit volume
  - $\cdot$   $n_D$ : number of dust particles per unit volume in the nebula
  - ·  $\mathcal{C}_{\lambda}$  : average extinction cross section at the wavelength  $\lambda$
- ·  $a_{\lambda}$ : albedo, fraction of the radiation removed from the flux that is scattered
  - $\cdot 1 a_{\lambda}$ : fraction that is absorbed
- $\cdot$  the scattering has been assumed to be spherically symmetric
- $\rightarrow$  intensity of the scattered continuum radiation:  $I_{\nu}(b) = \int j_{\nu} ds$ 
  - $\cdot$   $r_0$ : radius of nebula
  - b: minimum distance from the central star in a nebula

$$j_{\nu} = \frac{a_{\lambda}n_D C_{\lambda}\pi F_{\nu}}{4\pi} = \frac{a_{\lambda}n_D C_{\lambda}L_{\nu}}{16\pi^2 r^2},$$

### Comparison with $H\beta$

• compare with the Hβ surface brightness observed from the same nebula

• intensity at H  $\beta$ :  $I_{H\beta}(b) = \int j_{H\beta}ds$  ( $r_l$ : Stromgren radius) =  $\frac{1}{4\pi}n_\rho n_e \alpha_{H\beta}^{eff}hv_{H\beta}2\sqrt{r_1^2 - b^2}$ 

 $\rightarrow$ ratio of surface brightness in H $\beta$  to surface brightness:



• D: distance between the nebula and the observer

 $\rightarrow$  first factor can be determined from measurements of surface brightnesses and of the flux from the star

 $\cdot$  when the electron density is determined either from the H  $\beta\,$  surface brightness measurements or from [OIII] or [SII] line-ratio measurements

 $\to n_p/a_\lambda n_D C_\lambda$  (proportional to the ratio of densities of gas to dust) is determined

# Scattering of emission line & estimate of amount of the dust

#### $\cdot$ the emission-line radiation emitted by the gas is also be scattered

- · if  $a_{\lambda} = 1$  at all wavelengths, scattering don't affect the total emission-line flux from the whole nebula
  - $\boldsymbol{\cdot}$  every photon generated in the nebula escape
- $\Leftrightarrow$  in reality,  $a_\lambda < 1$ 
  - $\boldsymbol{\cdot}$  some emission-line photons are destroyed by dust within the nebula

⇒accurately, the procedure for correcting observed nebular emission line intensities for interstellar extinction (Section7.2) is not correct

- $\cdot$  it's based on stellar measurements, in which radiation scattered by dust doesn't reach the observer
- $\leftrightarrow$  numerical calculations of model nebulae show that this corrections are approximately correct
- $\cdot$  estimate the amount of dust within a globule with radius 0.05pc
  - optical depth along its diameter:  $\tau_{H\beta} \ge 4$  (appear quite opaque)
  - $\cdot$  suppose that the dust in the globule has the same properties as the dust in the ionized region of the nebula

 $\rightarrow n_D \ge 2 \times 10^{-8} \text{ cm}^{-3} \text{ (dust)}$ 

 $\boldsymbol{\cdot}$  suppose that the gas-to-dust ratio is the same

 $ightarrow n_H \ge 2 \times 10^4 \ {\rm cm^{-3}} \ {\rm (gas)}$ 

⇒indicates quite high gas densities in this type of globule

### 7.4 Infrared Thermal Emission

#### · Dust is also observed in HII regions by its infrared thermal emission

• high-resolution measurements have shown spectral features in the infrared radiation from dust

• the infrared radiation in HII regions is far greater than the free-free and bound-free continuous radiation predicted from the observed H $\beta$  and radio-frequency intensities

 $\cdot$  the observational data of NGC 1976

- $\cdot$  several infrared "point" sources
  - at least one of which (the "Becklin-Neugebauer (BN) object") is a highly luminous, heavily reddened star
    - $\cdot$  in the dense molecular cloud, and behind the ionized nebula
- $\cdot$  two extended peaks of intensity are measured at 10um and 20um
  - one centered approximately on the Trapezium (Ney-Allen nebula)
  - the other centered approximately on the BN object on the northwest of the Trapezium (Kleinmann-Low nebula)
- At much longer wavelengths (100um, 350um)
  - the Kleinmann-Low nebula remains a bright feature
  - the Ney-Allen nebula can't be distinguished from the background

### observational data of nebula (NGC1976)

• measured large nebular infrared continuous radiation can only explained by radiation from dust

- as a approximation, the dust emits a dilute blackbody spectrum
  - ⇒measurements at two wavelengths approximately determine its temperature
    - Ney-Allen nebula
      - the "color temperature" determined from the measured fluxes at 11.6um and 20um in this way:  $T_C \approx 220K$ 
        - approximately represent the temperature of dust particles
        - $\boldsymbol{\cdot}$  heated to this temperature by the absorption of UV and optical radiation from the Trapezium stars
          - $\cdot$  radiation from the nearby nebular gas that is ionized by samse stars may also contribute
    - Kleinmann-Low nebula

· observed dust is heated by absorption of shorter wavelength radiation emitted by the BN star within it  $\Rightarrow$ NGC 1976 is an ionized region at the edge of a giant dust cloud

- Kleinmann-Low nebula is a dense region within the cloud but near its ionized surface
- a relatively sharp peak at 9.8um, similar to the sharp peak observed in the infrared emission of many cool stars
  - FWHM: 2.5um
  - attributed to silicate particles, which have a band near this position

### Narrow features in HII region

#### · narrower infrared features are also observed in HII regions, and several planetary nebulae

 $\cdot$  too broad to be emission lines of ions

⇒probably the result of infrared fluorescence from vibrationally excited PAH molecules, or hydrogenated amorphous carbon particles

 $\rightarrow$  large molecules or small particles are excited by UV and optical radiation

 $\rightarrow$  decay to excited vibrational levels which emit photons in the 3.28um and other bands

 $\rightarrow$ decay to the ground level

 $\cdot$  this emission is due to the temperature spike ("quantum heating" )

 $\cdot$  immediately heating by absorption of the photon, and the subsequent cooling that continues until the arrival of the next photon

• important for small particle whose temperature is affected by a single photon

- $\boldsymbol{\cdot}$  such infrared peaks are available for other H II regions
- ⇒these peaks are regions of high dust density close to high-luminosity stars
  - $\boldsymbol{\cdot}$  absorb the energy and reradiate by the solid particles

### Origin of infrared emission

• the measured infrared flux is roughly proportional to the measured radio-frequency flux • the radio-frequency flux from a nebula is proportional to the number of recombinations  $\Rightarrow$  the infrared emission is roughly proportional to the number of recombinations

- plausibly interpretation
  - ionization by a stellar photon in an optically thick nebula
    - $\rightarrow$ a recombination and the emission of an Ly  $\alpha$  photon, or of two photons in the  $2^2S \rightarrow 1^2S$  continuum

 $\rightarrow$ Ly  $\alpha$  photons are scattered many times by resonance scattering before escape

 $\rightarrow$  perhaps every Ly  $\alpha$  photon is absorbed by dust in the nebula and its energy is re-emitted as infrared radiation

 $\Rightarrow \text{the ratio of total infrared flux to radio-frequency flux:} \quad \underline{j_{IR}} = \frac{n_p n_e \left(\alpha_B - \alpha_2^{eff}\right) h v_{L\alpha}}{\alpha_B - \alpha_2^{eff}}$  $4\pi i_{\rm M}$ 

- *j*: emission coefficient
- $\cdot j_{\nu}$ ,  $\alpha_B$ ,  $\alpha_{2^2s}^{eff}$  depend only weakly on T, and  $j_{\nu}$ ,  $j_{IR}$  have the same density dependence
- ⇒ratio is guite well determined
- $j_{IR}/j_{\nu}$  from the observation data is higher than that from (7.13)

 $\Rightarrow$  the infrared emission is larger than that by absorption of Ly  $\alpha$  alone

· in addition to Ly  $\alpha$ , some of the stellar radiation with  $\nu < \nu_0$  and the ionizing radiation with  $\nu > \nu_0$  must be absorbed by the dust

⇒some of the ionizing photons are destroyed in this way



### Dust in planetary nebulae

· dust in many planetary nebulae

 $\cdot$  a continuum is  $\,\times\,10\text{--}100$  stronger in the 5-18um region than the predicted free-free and bound-free continuum

 $\cdot$  observations at longer wavelengths (~100um) show that the infrared continuum peak at about 30um

 $\rightarrow$ indicate  $T_d \approx 100K$ 

 $\rightarrow$  Figure 7.8: spectrum of NGC7027, the planetary nebula

• broad continuum is largely due to broad-band thermal emission by larger dust grains

narrower features due to PAHs are prominent at shorter wavelengths



### 7.5 Formation and Destruction of Dust Particles Formation of dust particles

 $\cdot$  theoretical and experimental investigations

ightarrow dust particles can grow by accretion of individual atoms from the interstellar gas

 $\cdot$  dust particles can't initially form by atomic collisions

#### $\Rightarrow$ · dust must have been present in the atmosphere of the star

or

- dust must have formed during the earliest stages of the process, at the high densities region close to the star
- outer layers of cool stars can be cool, dense, and predominantly molecular
  - $\cdot$  H2 and CO: the most common molecules
    - $\cdot$  if the abundance of O is greater than C in the outer layers of the star (as Solar system)
      - nearly all C $\rightarrow$ CO
      - rest O $\rightarrow$ other molecules $\rightarrow$ the silicate grains
    - $\cdot$  if the abundance of C is greater than O
      - $\cdot$  Graphite is formed by rest C

### Destruction of dust particles

 $\cdot$  sputtering

- collisions of ions with a dust particle knock atoms or molecules out of its surface
- $\cdot$  important if the gas is quite hot, but inefficient at nebular temperatures

#### $\cdot$ the ejection of photoelectrons

- $\cdot$  by absorption of high-energy photons
- when the potential due to the positive charge come to exceed the binding energy of the grain, grain is destroyed

#### $\cdot$ sublimation

 $\cdot$  if a grain becomes hot, outer layers will evaporate and the grain is destroyed

 $\stackrel{\leftrightarrow}{}$  observation shows that elements like AI and Ca (mostly found within grains in ISM) are also strongly depleted from the gas phase in nebulae

 $\Rightarrow$ these processes are not efficient to destroy a significant fraction of the grains

#### $\cdot$ shock waves

- $\cdot$  at near the shock front, process such as grain-grain collisions and sputtering occur
  - $\rightarrow$ larger grains are broken into smaller ones with a range of sizes
    - $\cdot$  probably establishes the observed distribution of sizes

• observed variation in the ratio of total to selective extinction is partly due to different regions with different histories of shock passage, and a different size ratio of grains