The MOSDEF Survey: Metallicity dependence of the PAH emission at High Redshift: Implications for 24 micron-inferred IR luminosities and star formation rates at z~2

IRENE SHIVAEI^{1,5}, NAVEEN A. REDDY^{1,6}, ALICE E. SHAPLEY², BRIAN SIANA¹, MARISKA KRIEK³, BAHRAM MOBASHER¹,

ALISON L. COIL⁴, WILLIAM R. FREEMAN¹, RYAN L. SANDERS², SEDONA H. PRICE³, MOJEGAN AZADI DRAFT: September 19, 2016, Submitted to ApJ

ABSTRACT

We present results on the variation of Polycyclic Aromatic Hydrocarbon (PAH) emission at 7.7μ m in galaxies spanning a wide range in metallicity at $z \sim 2$. For this analysis, we use rest-frame optical spectra of 476 galaxies at 1.37 < z < 2.61 from the MOSFIRE Deep Evolution Field (MOSDEF) survey to infer metallicities and ionization states. Spitzer/MIPS $24\mu m$ observations are used to derive rest-frame 7.7 μ m luminosities ($L_{7.7}$) and far-IR data from Herschel/PACS 100 and 160 μ m to measure total IR luminosities $(L_{\rm IR})$. We find significant trends between the ratio of $L_{7.7}$ to $L_{\rm IR}$ (and to dust-corrected SFR) and both metallicity and [OIII]/[OII] (O_{32}) emission-line ratio. The latter is an empirical proxy for the ionization parameter. These trends indicate a paucity of PAH molecules in low metallicity environments with harder and more intense radiation fields. Additionally, $L_{7.7}/L_{\rm IR}$ is significantly lower in the youngest quartile in our sample (ages of $\sim 400 \,\mathrm{Myr}$) compared to older galaxies, which may be a result of the delayed production of PAHs by AGB stars. The relative strength of $L_{7.7}$ to $L_{\rm IR}$ is also lower by a factor of ~ 2 for galaxies with masses $M_* < 10^{10} {\rm M_{\odot}}$, compared to the more massive ones. We demonstrate that commonly-used conversions of $L_{7.7}$ (or $24\,\mu\mathrm{m}$ flux density; f_{24}) to $L_{\rm IR}$ underestimate the IR luminosity by more than a factor of 2 at $M_* \sim 10^{9.6-10.0} \,{\rm M_\odot}$. Consequently, the SFR- M_* relation has a shallower slope than previously derived from studies that neglected the metallicity dependence of the 24μ m-to-IR conversion factor. Our results suggest a higher IR luminosity density at $z \sim 2$ than previously measured, which corresponds to a $\sim 30\%$ increase in the SFR density.

Subject headings: galaxies: general — galaxies: high-redshift — galaxies: star formation — infrared: galaxies — ISM: molecules

high-z (z=1.3~2.6)の大規模サンプル(N=476)で初めて、最も強いPAH輝線7.7umと 他の輝線との間の様々な相関を調べた。

low-zでの

- 低金属量(≈低質量)のため輻射場が強くて硬い環境ではPAHが破壊される。
- PAHはAGB星によって生成される(若い銀河ではPAHがIR光度に占める割合が

小さい)。

という描像と矛盾ない結果が得られた。

Figure 1. Histogram of rest-frame $7.7 \,\mu\text{m}$ luminosities converted from 24 µm flux densities using IR templates of Chary & Elbaz (2001, red), Dale & Helou (2002, blue), and Rieke et al. (2009, green) for 299 galaxies with robust redshift measurements. The systematic bias between different models is not significant compared to the measurement uncertainties.

赤: Chary & Elbaz 01のIR template から再現したvLv(7.7µm)

1000 Age [Myr] Figure 4. (a): ratio of $L_{7,7}$ to SFR_{H α , H β} as a function of age.

Symbols are the same as Figure 2. (b): ratio of $7.7 \,\mu m$ luminosity to L_{IR} as a function of age. Symbols are the same as Figure 3 Ages are derived from the best-fit SEDs. Stacked values are listed in Tables 1 and 2.

 $L_{7.7}$ / $L_{\rm IR}$

0.1

b

200

Figure 3. Relative strength of $7.7 \,\mu\text{m}$ luminosity to total IR luminosity as a function of N2 metallicity (a), O3N2 metallicity (b), O₃₂ ratio (c), and ratio of $24\,\mu$ m flux density to total IR luminosity versus O_{32} (d). In order to gain sufficient S/N in PACS bands, the lowest metallicity bins and the highest O_{32} bin have twice the number of galaxies in other bins. Yellow stars show stacks of all galaxies. For comparison, we show the $L_7/L_{\rm IR}$ conversions of E11 and R12 and the associated uncertainties with solid lines shaded regions, respectively. The $f_{24}/L_{\rm IR}$ ratio of W08 is plotted in panel d. The W08 ratio is redshift-dependent and the width of the purple line in plot the range of values for the three bins. The N2 stacks are only performed for galaxies at z > 2, because otherwise the last bin would be biased towards galaxies at z < 2.0. Stacked values are listed in Table 2.

z=1.5-2.6のUV select銀河