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The point spread function (PSF) reflects states of a telescope and plays an important role
in development of smart data processing methods. However, for wide field small aperture
telescopes (WESATS), estimating PSF 1n any position of the whole field of view (FoV) 1s
hard, because aberrations induced by the optical system are quite complex and the signal to
noise ratio of star images 1s often too low for PSF estimation. In this paper, we further develop
our deep neural network (DNN) based PSF modelling method and show its applications in
PSF estimation. During the telescope alignment and testing stage, our method collects system
calibration data through modification of optical elements within engineering tolerances (tilting
and decentering). Then we use these data to train a DNN. After training, the DNN can estimate
PSF 1n any field of view from several discretely sampled star images. We use both simulated
and experimental data to test performance of our method. The results show that our method
could successtully reconstruct PSFs of WESATSs of any states and 1n any positions of the
FoV. Its results are significantly more precise than results obtained by the compared classic
method - Inverse Distance Weight (IDW) interpolation. Our method provides foundations for
developing of smart data processing methods for WESATS 1n the future.
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Figure 6. The concept design of the optical path in our experiment.
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Figure 1. The structure of the Tel-Net. The Tel-Net consists of convolutional layers (Conv2d in blue), Bias layers (Bias in brown), Activation layers (Relu 1n
purple), Conv-transpose layers (ConvIranspose2d in red), multiply layers (multiplier in grey) and Fixup blocks (Fixup block in green). The structure of Fixup
block 1s shown 1n the right part of this figure.
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Table 2. MSE between predicted PSFs (estimated by the Tel-Net and the
IDW) and original PSFs. The Tel-Net 1s trained by 2000 training PSF—Cubes
and tested by 100 test PSF—Cubes.

Predicted Method MSE mean MSE variance
Tel-Net 1.49 x 1078 5.81 x 10~
IDW 7.79x 1077 2.04x 10713
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Table 3. MSE between predicted PSFs (estimated by the Tel-Net and the
IDW) and original PSFs. The Tel-Net 1s trained by 36 training PSF-Cubes
and tested by 4 PSF—Cubes.

lType mean var
Tel-Net 1.29 x 10~° 3.07 x 10712
IDW  2.83x107% 5.60x 10!



