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Context. Gaussian processes (GPs) have become a common tool in astronomy for analysing time series data, particularly E 04 - ‘d—ll;enoglc T‘:E_BF b L Periodic
in exoplanet science and stellar astrophysics. However, choosing the appropriate covariance structure for a GP model T . . | 1 : : - 1 : : -
remains a challenge in many situations, limiting model flexibility and performance. 3 Pusticle 4 Pasticle 5 Pusticle 6
Aims. This work provides an introduction to recent advances in GP structure learning methods, which enable the = et e e
automated discovery of optimal GP kernels directly from the data, with the aim of making these methods more g 04 . - A - .
accessible to the astronomical community. < 0.2 . _ N Tpeoq| L4
Methods. We present gallifrey, a JAX-based Python package that implements a sequential Monte Carlo algorithm h A [ % g toer R 2
for Bayesian kernel structure learning. This approach defines a prior distribution over kernel structures and hyper- 0.0 L fgieer . whvied Bl | g Petodlc
parameters, and efficiently samples the GP posterior distribution using a novel involutive Markov chain Monte Carlo _0.24] ! perodie] | X | i ! Fa Roade
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Results. We applied gallifrey to common astronomical time series tasks, including stellar variability modelling, exo- 04 L periodic L rer L Periodic
planet transit modelling, and transmission spectroscopy. We show that this methodology can accurately interpolate and —0.6- : : = 1, : : = 1, ; : =
extrapolate stellar variability, recover transit parameters with robust uncertainties, and derive transmission spectra by 1386 1388 1390 1392 1386 1388 1390 1392 1386 1388 1390 1392

effectively separating the background from the transit signal. When compared with traditional fixed-kernel approaches, Time [Days]
we show that structure learning has advantages in terms of accuracy and uncertainty estimation.

Conclusions. Structure learning can enhance the performance of GP regression for astronomical time series modelling.
We discuss a road map for algorithmic improvements in terms of scalability to larger datasets, so that the methods

presented here can be applied to future stellar and exoplanet missions such as PLATO.

Fig. 5: Sample of predictions for individual particles from the final SMC ensemble used for Fig. 3, including their respective
kernel structures. Particles exhibit a variety of kernel structures and produce varying predictions, which leads to a more
robust overall prediction when combined. Note that while the depth of every kernel displayed here corresponds to the

maximum tree depth, Dy,ax = 3, the learned kernels can end up shallower if simpler kernel structures are preferred.
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Background
Gaussian Process has been widely used to approximate a sequence of measurements. 3
The "smoothness" of the sequence is controlled via a kernel (correlation).

All the expectations can be provided from a Normal distribution when the kernel is fixed.
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new coordinates Kernel function Fig. 1: Example of a kernel representation data points have already been seen during the annealing schedule, while yellow regions are predictions. The algorithm
expected values

learns more intricate patterns and reduces prediction uncertainty as more data points are added.

GP provides a useful Bayesian solution, but choosing an appropriate kernel function remains a difficult task.

Fig. 8: Transit parameter fit for the synthetic light curve
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Saad et al. (2023) proposed a novel method to optimize a GP kernel, where they introduce a binary tree (Fig. 1) %o, . o, o3 ! ated using an AR(1) process, with an added transit signal.
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to represent the structure of a kernel. A kernel is procedurally sampled from a prior distribution. g * R ° ¢ * adh, The grey line corresponds to the underlying transit light
ot N oo o 'o.('.' curve. (b) GP prediction for the learned kernel structure
They use a hybrid approach in optimization: 2 0000 2 @ * e o %2 o'e (purple) and the RBF kernel (magenta). The central line
i ) 5 e corresponds to the mean prediction with a confidence band
Kernel structure: Sqeuential Monte Carlo (population-based Monte Carlo method) =005 Trainine Daie of one standard deviation. (c) Posterior distribution for the
Kernel hyperparameters: Hamiltonian Monte Carlo (high performance MCMC) 2 ¢  lrammg Data transit parameter, p, using the learned kernel and RBF ker-
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Boettener implemented Saad's algorithm in Python and presented some astrophysical applications.
atransit ina PLATO-like light curve / a transit on a varying baseline / transmission spectroscopy of HATS-46 b

T T
0.0 0.2 0.4 0.6 0.8

Time [Arbitrary Units]

T T T
—0.8 —0.6 —0.4 —0.2

Il RBF Kernel
Hl Lcaned Kemel

0.24
.
10450 . s Dua 0.49
B
. ® $ o Lo 0.0+
10400 . ‘E%' e 5@ e . ° .g%. S 0.2 = : ! ;
. P . . “A E .
ARG L B A “*@&' I R Z 0] 20005
— 10350 « % . ' . ® o 8 fise . = O . ] i
o © .?R '5, [ L .‘b@ e . S @ o& g = o 1.0
vy 2 ‘e % 2 _0.24 =
Z 10300 < j. % » 2 2 * oo PRECH 4 20 = (0.0004
e e 3 £ s $ 238 ° 3 Z = 0.8+ .
(& A 2803 A . we 5 047 S
10250 o - o ¢ se 5 oi® = = . 0.6 .
- o wg 3.9 ol ) €% —0.64 S 0.0054 6
. . .G . &
% 2 % @ ° 4] 3
10200 . % A 05 o S = 04 i
. F] £ e Training Prediction = 0104 o -
hd : ° [raining Data — RBF
135 1387 1358 13% 1300 1301 1302 1303 ; ; ; ; Y Y y Y * 029 7
36 387 3 ¢ : 302 1386 1387 1388 1380 1390 1391 1392 1393 deed] Tramne — ] e
S me Do) Pime [Dage o015 Masked Transit Leamed o i
T T T T T T
—0.8 —0.6 —0.4 —0.2 0.0 0.2 0.4 0.6 0.8 T

T T T T T T
0.100 0.125 0.00 0.25 0.50 0.75 0.0 0.5 1.0

Radius Ratio ) e

(c)

Fig 2&3: Example of Gaussian Process. (left) A light curve of TIC 10863087 observed by TESS. (right) An example of 007
interpolation with GP. The orange data are masked and interpolated using the remaining data. The uncertainties are

indicated by the shaded area.
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