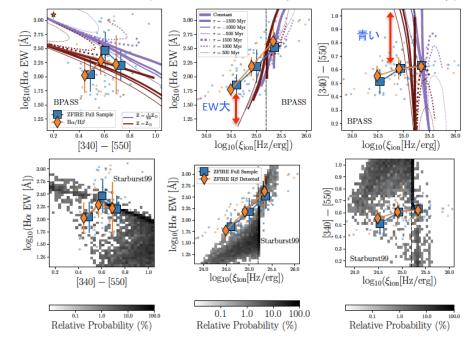
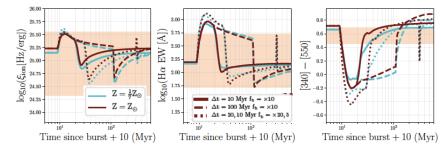
RECONSTRUCTING THE OBSERVED IONIZING PHOTON PRODUCTION EFFICIENCY AT $Z \sim 2$ USING STELLAR POPULATION MODELS

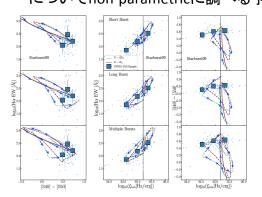
THEMIYA NANAYAKKARA^{1,*}, JARLE BRINCHMANN², KARL GLAZEBROOK³, RYCHARD BOUWENS¹, LISA KEWLEY^{4,5}, KIM-VY TRAN^{5,6,7,8}, MICHAEL COWLEY^{9,10}, DEANNE FISHER³, GLENN G. KACPRZAK³, IVO LABBE³, AND CAROLINE STRAATMAN¹¹

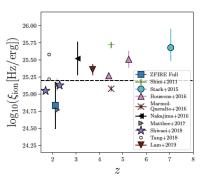

 $\xi_{ion} = \frac{N(H)}{L_{UV}} [Hz/erg]$ $N(H) = \frac{L(H\alpha)}{C_B} [s^{-1}]$

Abstract


- SFGs@z~2のξ_{ion}を測定し、Hα EW & optical colorと比較
 - それぞれが異なるタイムスケールでSFHの変動を反映
- 従来のSPSモデルでは観測結果を説明できない
 - 予想よりもξ_{ion}が小さい(UV光度が大きい)

Sample


- ZFIREによる130個の分光HAEs (logM~9.0-11.5)
 - COSMOS field (AGN含まず)
- Balmer decrementでHαの減光補正
 - 49個についてはHβも検出されている (>3σ)
 - その他については各SFR binでstackして算出



- Ionizing photon production efficiency (ξ_{ion})
 - Hα vs. UV continuum
 - O型星(>20M_☉) vs. OB型星(>3M_☉)
- Hα equivalent width
 - Hα vs. continuum@6563Å
 - O型星(>20M_☉) vs. 古い星 (~0.7-3M_☉)
- [340] [550] color
 - 青い星 vs. 赤い星

モデルの予想に比べて、EWとcolorを固定した時の ξ_{ion} が小さい starburstを取り入れたモデルであれば観測結果を再現することは 可能だが、burst直後の銀河だけが観測される確率は極めて低い どのようなSFHであれば観測結果を再現できるのか、個々の銀河についてnon-parametricに調べる予定

