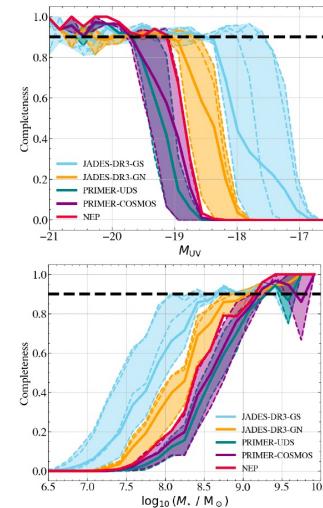
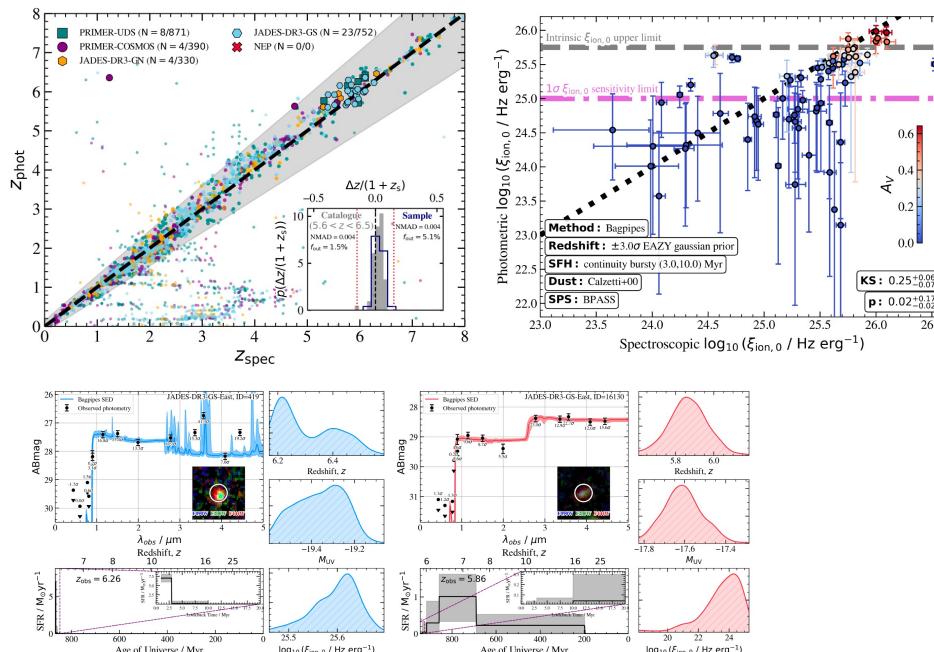


5. IGM Clumping



- formulation for reionization equilibrium

$$Q_{HII} = \frac{\dot{n}_{ion}(1+z)^3}{(n_H)^2 \langle \alpha_{rec}(T_e) \rangle C_{HII,rec}} \frac{4(1-Y)}{(4-3Y)}.$$

- For given Q_{HII} , $C_{HII,rec}$ is uniquely obtained.
- $C_{HII,rec}$ is a function of $M_{UV,lim}$ through \dot{n}_{ion}

- similar results to C.Simmonds (2024b) at $M_{UV,lim} \leq -17$
- differences become large when extrapolating to fainter $M_{UV,lim}$
- $M_{UV,lim}$ estimated by simulations
 - 16.0 by J.Jaacks (2013)
 - 12 ~ -10 by Angel(2016); Mutch(2016); Poole (2016)
 - 12 ~ -11 by Ocvirk(2020); Dawoodbhoy(2023)
- New record : GLIMPSE survey by Goolsby(in prep)
 - no turnover as faint as $M_{UV,lim} = -13.5$
 - adopting this limit leads to $C_{HII,rec} \simeq 8.8$ for $f_{esc}^{LyC} = 0.10$
 - $C_{HII,rec} \simeq 6.2$ for $f_{esc}^{LyC}(M_{UV})$
- Favourability of Davies(2024) model over Shull(2012)
 - evaluated by the Bayes factor
 - For $M_{UV,lim} = -13.5$, both favour Davies(2024)
- $Q_{HII} = 0.7$
 - To favour Davies(2024) model, required turnover is $M_{UV,lim} > -15.7$, $M_{UV,lim} > -13.7$, respectively.
 - they conclude a moderate favourability of Davies(2024)
- Two scenarios for the topology of reionization
 - “inside out” : reionized from the most to the least-dense regions
 - At the end of EoR, the least dense void reionized very quickly
 - This might violate the assumption $dQ_{HII}/dt = 0$
 - Numerical simulations favour it.
 - “outside in” : the opposite
- Their elevated $C_{HII,rec}$ measurements could (in part) due to more “inside out”

