Kazuki Daikuhara, 1,2 Takahiro Morishita,3 Tadayuki Kodama,2 Ranga-Ram Chary,3 Masayuki Akiyama,2 and

Jose, M. Pérez-Martínez4,5

Spatial distribution of H β +[OIII] emitters

13 objects have large offsets

Introduction

- · extreme emission line galaxies(EELGs)
 - · ongoing starforming activitiv
 - · contributed to reionization?
- Possible senarios
 - 1. AGN
 - 2. Nearby HII region
 - 3. Shock heating

Data & method

- · Data: CEERs, PRIMER, JADES
- Redshift range 7 < z photo < 8
- Hβ+[OIII] emitters are colour- selected→119
- m F444W-m F410M > 0.25
- SED fitting(gsf) \rightarrow M, Av, UV slope(β), SFR

SFR_{UV}
$$[M_{\odot} \, \text{yr}^{-1}] = 0.88 \times 10^{-28} \, \left(\frac{L_{\text{UV,corr}}}{\text{erg s}^{-1} \, \text{Hz}^{-1}} \right).$$
 (4

- Measurement of H β + [OIII] flux and EW
- EW > 1000A : EELGs (40%), EW > 3000A :High EW amittors (10)

$$F_{H\beta+[O_{III}]} = (f_{F410M} - f_{con})\Delta_{F410M},$$
 (5)

Also, they made H β +[OIII] line maps

mass distribution

Data & method

- Detection of clumpy structures (F150W)
- more than 2 detection in r < 0".35
- Measurement of the effective size r eff

Properties of $H\beta$ +[OIII] emitters

High-EW emitters have low mass, low dust, blue colours

→ burst phase of star-forming activities

Clumpy structures

- 38% of H β +[OIII] emitters have clumpy structures
- · Higher fraction than the normal galaxies
 - · high EWs are stimulated by the violent gravitational instability of the disk

Discussion

- 84% of the EELGs placed above SFMS(>0.3dex)
- higher fraction of the clumpy structures
 - · Active starbursts are suggested
- no strong dependence of β on EW
 - · Rapid buildup of dust reservoirs
 - a substantial contribution from nebular continuum emission

- Potential contribution from AGNs is small.
- Offset Emissions are likely due to shocks from strong outflows
- They discovered an overdensity (fiftyfold) of EELGs in JADES field.
- the clustering of EELGs could be a signpost of interesting regions that host large ionization bubbles and quiescent populations.

