Arxiv: 2202.04081

The star formation burstiness and ionizing efficiency of low-mass galaxies

Hakim Atek^{1*}, Lukas J. Furtak¹, Pascal Oesch^{2,3}, Pieter van Dokkum⁴, Naveen Reddy⁵, Thierry Contini⁶, Garth Illingworth⁷, Stephen Wilkins⁸

ABSTRACT

We investigate the burstiness of star formation and the ionizing efficiency of a large sample of galaxies at 0.7 < z < 1.5 using HST grism spectroscopy and deep ultraviolet (UV) imaging in the GOODS-N and GOODS-S fields. The star formation history (SFH) in these strong emission line low-mass galaxies indicates an elevated star formation rate (SFR) based on the H α emission line at a given stellar mass when compared to the standard main sequence. Moreover, when comparing the H α and UV SFR indicators, we find that an excess in SFR_{H α} compared to SFR_{UV} is preferentially observed in lower-mass galaxies below $10^9 M_{\odot}$, which are also the highest-EW galaxies. These findings suggest that the burstiness parameters of these strong emission line galaxies may differ from those inferred from hydrodynamical simulations and previous observations. For instance, a larger burstiness duty cycle would explain the observed SFR_{H α} excess. We also estimate the ionizing photon production efficiency ξ_{ion} , finding a median value of $Log(\xi_{ion}/erg^{-1} Hz) = 24.80 \pm 0.26$ when adopting a Galactic dust correction for H α and an SMC one for the stellar component. We observe an increase of ξ_{ion} with redshift, further confirming similar results at higher redshifts. We also find that ξ_{ion} is strongly correlated with $EW_{H\alpha}$, which provides an approach for deriving ξ_{ion} in early galaxies. We observe that lower-mass, lower-luminosity galaxies have a higher ξ_{ion} . Overall, these results provide further support for faint galaxies playing a major role in the reionization of the Universe.

Target: Galaxies at 0.7 < z < 1.5 down to a stellar mass of $10^8 M_{\odot}$ Observation: 3D-HST (Spectroscopy, Momcheva et al. 2016) HDUV legacy survey (UV imaging, Oesch et al. 2018)

Assuming an intrinsic UV slope of β_0 =-2.62 (Reddy et al. 2018a)

SFMS:

The observed flattening of the slope towards low-mass galaxies is likely the result of $H\alpha$ flux incompleteness. However, the deviation from the main sequence is much larger at low mass, as the highest $EWH\alpha$ values are observed at lower masses. ↔ Other UV or SED-based SFR indicators found no evidence of increasing scatter towards lower masses, nor evidence for an enhanced H α luminosity compared to UV

$H\alpha$ v.s UV:

The SFRH α /SFRUV ratio differ from the model in Weisz+12 with burst episodes lasting less than 10 Myr and a period of 250 Myr between bursts. Also, high- $EWH\alpha$ galaxies have the highest SFR $H\alpha$ /SFRUV(i) a larger τ in the exponential SF; (ii) a shorter period between successive SF bursts. (iii) IMF (binary stars, higher mass end)

 ξ_{ion} : the production rate of Lyman-continuum photons (λ < 912 Å) per unit Ultra-Violet (UV) continuum luminosity measured at 1500 Å.

It is also found that ξ ion is anti-correlated with stellar mass and absolute UV magnitude

> Other Recent studies: low-mass galaxies are more representative of the galaxy population at the epoch of reionization and take charge of reionization.

Implication:

The classical value of Log(ξ ion) = 25.2, based on massive galaxies, may not hold in low-mass galaxies.

Variations of the escape fraction in lowmass galaxies, driven by supernovae explosions of massive stars

