THE MOSDEF SURVEY: SULFUR EMISSION-LINE RATIOS PROVIDE NEW INSIGHTS INTO EVOLVING ISM CONDITIONS AT HIGH REDSHIFT¹

ALICE E. SHAPLEY,² RYAN L. SANDERS,³ PENG SHAO,⁴ NAVEEN A. REDDY,⁵ MARISKA KRIEK,⁶ ALISON L. COIL,⁷ BAHRAM MOBASHER,⁵ BRIAN SIANA,⁵ IRENE SHIVAEI,^{8,9} WILLIAM R. FREEMAN,⁵ MOJEGAN AZADI,¹⁰ SEDONA H. PRICE,¹¹ GENE C. K. LEUNG,⁷ TARA FETHEROLF,⁵ LAURA DE GROOT,¹² TOM ZICK,⁶ FRANCESCA M. FORNASINI,¹⁰ GUILLERMO BARRO¹³

Draft version August 16, 2019

ABSTRACT

We present results on the emission-line properties of $1.3 \le z \le 2.7$ galaxies drawn from the complete MOS-FIRE Deep Evolution Field (MOSDEF) survey. Specifically, we use observations of the emission-line diagnostic diagram of $[OIII]\lambda 5007/H\beta$ vs. $[SII]\lambda\lambda 6717, 6731/H\alpha$, i.e., the "[SII] BPT diagram," to gain insight into the physical properties of high-redshift star-forming regions. High-redshift MOSDEF galaxies are offset towards lower [SII] $\lambda\lambda 6717, 6731/H\alpha$ at fixed [OIII] $\lambda 5007/H\beta$, relative to local galaxies from the Sloan Digital Sky Survey (SDSS). Furthermore, at fixed [OIII] λ 5007/H β , local SDSS galaxies follow a trend of decreasing $[SII]\lambda\lambda 6717, 6731/H\alpha$ as the surface density of star formation (Σ_{SFR}) increases. We explain this trend in terms of the decreasing fractional contribution from diffuse ionized gas (f_{DIG}) as Σ_{SFR} increases in galaxies, which causes galaxy-integrated line ratios to shift towards the locus of pure H II-region emission. The $z \sim 0$ relationship between f_{DIG} and Σ_{SFR} implies that high-redshift galaxies have lower f_{DIG} values than typical local systems, given their significantly higher typical Σ_{SFR} . When an appropriate low-redshift benchmark with zero or minimal f_{DIG} is used, high-redshift MOSDEF galaxies appear offset towards higher [SII] $\lambda\lambda$ 6717, 6731/H α and/or [OIII] λ 5007/H β . The joint shifts of high-redshift galaxies in the [SII] and [NII] BPT diagrams are best explained in terms of the harder spectra ionizing their star-forming regions at fixed nebular oxygen abundance (expected for chemically-young galaxies), as opposed to large variations in N/O ratios or higher ionization parameters. The evolving mixture of H II regions and DIG is an essential ingredient to our description of the ISM over cosmic time.

<u>輝線比診断におけるDiffuse Ionized Gasの影響</u>

- ・ 銀河の輝線比診断はISMの物理を解く上で重要な手法。
- スリットやファイバーで測定されるHα fluxにはDiffuse Ionized Gas (DIG)の 寄与が含まれている
 - DIGはHII領域の外側に存在し、観測されるHα fluxの30-60%を占める。
- DIGとHII領域では物理状態や電離状態が異なるが、[NII] BPT上ではその 影響は見えない。
- DIGも合わせて理解しなければHII領域の物理を正しく知ることは出来ない。
- MOSDEFの完全なdatasetを使ってDIGの寄与(の変化)も含めて再評価する。

Figure 2. Median Σ_{SFR} for SDSS galaxies as a function of position in the [SII] BPT diagram. There is a strong trend for galaxies with higher values of Σ_{SFR} to be shifted towards lower values of [SII]λλ6717,3731/Hα at fixed [OIII]λ5007/Hβ (Masters et al. 2016). In addition, we indicate the running median for local H II regions (PI)ugin & Grebel|2016) with the dotted pink line. The running median line ratios are calculated in bins of H II-region electron temperature. The *hiionly* model from [Sanders et al. (2017)] is shown with the dashed black line, representing the ensemble average emission from H II regions in star-forming galaxies in the absence of DIG emission. Finally, the running median for "DIG"-like (i.e., low Hα surface brightness) spaxels from the SDSS/MANGA DIG galaxy sample used in [Sanders et al.] (2017) is shown as the solid dark-grey curve. The running median line ratios for the "DIG"-like curve are calculated in bins of ([OIII]λ5007/Hβ/([NII]λ6584/Hα), which correlates with nebular metallicity in local H II regions (Pettini & Pagel[2004]).

Fig2. SDSS銀河の[SII] BPT

ΣSFRが大きいほど[SII]/Hαが小さくなる傾向。 ΣSFRはHα fluxへのDIGの寄与 (f_{DIG})と逆相関 するので、ΣSFR大→f_{DIG}小。

	SDSS	z~1.5	z~2.3
Log(ΣSFR)	-1.93	-0.46	-0.03
f_{DIG}	0.54	0.11	0.0

Fig4. MOSDEF銀河の[SII] BPT

(Fig1と異なるのは、比較する近傍データのΣSFR をMOSDEFと揃えた点。) 近傍銀河よりも[SII]/Hαが右に来る ([NII]/Hαも同様)。

→ high-zではharder ionizing spectrum (電離パラメタの違い説を棄却)

Figure 4. Comparison in the [SII] BPT diagram between MOSDEF galaxies, HII regions, and models with low DIG emission fraction. **Left:** [SII] BPT diagram for $z \sim 2.3$ MOSDEF galaxies and stacks (green points, red stars), median sequence of local H II regions (magenta dotted line), and *hiionly* model from Sanders; et al. (2017) (black dashed line), $z \sim 2.3$ MOSDEF galaxies are clearly offset towards larger [OII] λ 5007/H β and/or larger [SII] $\lambda\lambda$ 6717,6731/H α relative to local H II regions and the *hiionly* model. **Right:** The same plot, but for $z \sim 1.5$ MOSDEF galaxies and stacks (blue points, gold stars), local H II regions (magenta dotted line), and a model from Sanders et al. (2017) representing the ensemble average emission from H II regions in star-forming galaxies plus a DIG fractional contribution to the H α emission of $f_{DIG} = 0.11$. The offset between $z \sim 1.5$ MOSDEF galaxies and the comparison curves is smaller than for the $z \sim 2.3$ MOSDEF sample.