THREE DUSTY STAR FORMING GALAXIES AT $Z\sim 1.5:$ MERGERS AND DISKS ON THE MAIN SEQUENCE

PATRICK M. DREW¹, CAITLIN M. CASEY¹, ASANTHA COORAY², AND KATHERINE E. WHITAKER^{3,4} Draft version March 3, 2020

ABSTRACT

The main sequence of galaxies, a correlation between the star formation rates and stellar masses of galaxies, has been observed out to $z \sim 4$. Galaxies within the scatter of the correlation are typically interpreted to be secularly evolving while galaxies with star formation rates elevated above the main sequence are interpreted to be undergoing interactions or to be Toomre-unstable disks with starbursting clumps. In this paper we investigate the recent merger histories of three dusty star forming galaxies, identified by their bright submillimeter emission at $z \sim 1.5$. We analyze rest-frame optical and UV imaging, rest-frame optical emission line kinematics using slit spectra obtained with MOSFIRE on Keck I, and calculate Gini and M₂₀ statistics for each galaxy and conclude two are merger-driven while the third is an isolated disk galaxy. The disk galaxy lies $\sim 4\times$ below the main sequence, one merger lies within the scatter of the main sequence, and one merger lies $\sim 4\times$ below the main sequence. This hints that the location of a galaxy with respect to the main sequence may not be a useful discriminator of the recent star formation history of high-M_{*} galaxies at $z \sim 1$.

Dusty SF 銀河 (DSFG) はMerger or disk? MS図のどこに属するか?

- サブミリで見つかるようなDSFGは(その星形成の強さから) merger だろうと 言われてきたが、近年ではmergingの兆候を示さないものも見つかっている。
 - 星形成の要因が merger なのか否かは銀河進化において重要な 情報。
- Merger-driven SFかどうかを形態と力学から推定し、さらにDSFGがMS図の どこに位置するかを調べる。(merger-drivenだとMSの上に来るのか?)

Figure 4. Gini-M₂₀ diagram with our sample overplotted. Squares indicate classifications of mergers, while the circle indicates disk, as determined by our morphological and kinematic analyses. The black boundary lines are adopted from Lotz et al. (2008), which are calibrated to galaxies between 0.2 < z < 1.2 in the EGS HST survey. While 450.25 is undergoing a merger it falls in the disk region. This may be due to the fact that it is observed in an early stage of the merger and H-band emission is therefore not yet concentrated in a small region. The imaging and kinematic analysis of 450.27 was a little ambiguous (see Section 5.2), but given its location in the Gini-M₂₀ diagram we conclude it is a merger. Errors on Gini, calculated by performing 10⁴ statistical bootstrap measurements of the pixels associated with each galaxy. Errors on M₂₀ were not performed.

Figure 5. Our sample plotted against three main sequence fits from the literature. Our galaxies comprise the high stellar mass end of the MS. The orange line is the fit from Rodighiero et al. (2011) to data between 1.5 < z < 2.5, the green line is the fit from Whitaker et al. (2014) to data between 1.5 < z < 2.0, and the purple line is the fit from Koprowski et al. (2016) to data at z > 1.5. The shaded regions are ± 0.3 dex from each fit, which is the typical 1 σ scatter observed in the distribution (e.g. Whitaker et al. (2014).

 Disk-likeな銀河がMSよりSFRが大きく、mergerlikeな銀河がMSと同じか、より小さなSFRを持つ。

N				arXiv.2003.00016	
	Table 1 $(+ \text{Drew et al} 2018)$				
	Parameters of Each Galaxy				
	Source	450.25	450.27	850.95	
	RA	10:00:28.58	09:59:42.92	09:59:59.80	
	Dec	+02:19:28.3	+02:21:45.1	+02:27:07.4	
	$z_{ m spec}$	1.515	1.531	1.555	
	M_{\star} (M _{\odot})	$(3.4 \pm 0.5) \times 10^{11}$	$(3.0\pm0.6)\times10^{11}$	$(3.8\pm3.0)\! imes\!10^{10}$	
	L_{IR} (L _O)	$(1.5^{+0.7}_{-0.5}) \times 10^{12}$	$(4.1 \pm 0.5) \times 10^{12}$	$(3.0^{+1.2}_{-0.9}) \times 10^{12}$	
	$SFR (M_{\odot} yr^{-1})$	157^{+80}_{-53}	382^{+51}_{-45}	373^{+110}_{-90}	
	Gini	0.53 ± 0.01	0.63 ± 0.01	0.48 ± 0.01	
	M_{20}	-1.725	-1.808	-1.654	
	Physical Driver	Merger	Merger	Disk	
	DSFG850.95の図は				
			í	Drew+18から。	
0	40 INII)6548 Ha INII)	583 40 40 INII 6548	Ha [NI]]6583 40	[NII]6548 Ha [NII]6583	
Ŭ	t (bpc)	t (kpc)	10 9500 20		
Spatial Extent (dec					
	Spatial E				
	-40 450.27 (t				
Rest Wavelength (Å) Rest Wavelength (Å) Rest Wavelength (Å) Figure 1. Signal to noise spectra for 450.25 showing Ha, [NII], and continuum emission. Hatched regions denote telluric line contamination and white regions denote bad pixels. The resolution in each dimension is denoted by the white cross in the lower right corners. Regions of negative SNR are artifacts from the ABBA nod pattern coaddition procedure.					
corners. Regions of negative SNR are artifacts from the ABBA nod pattern coaddition procedure.					
	450.25				
	r			<u> </u>	
	Spatial Offset (kpc		ial Offset (kpc) 0 5 10 400-	Spatial Offset (kpc) -15 -10 -5 0 5 10 15	
	-10 -5 0 5	450.25	200	V _{nar} =285±12 km s ⁻¹	
	S/110 50		rotation?	rotation	
	(5) 100 100 100 100 100 100 100 100 100 100		(low spatial resol.) $\stackrel{\sim}{>}_{_{-200}}$	$V = {}^{2}_{\pi} V_{s} \arctan(r/r_{t}) + cr$ = -0.5±1.0 km s ⁻¹ arcsec ⁻¹	
	-100	-400			
	, 150 merger	ý 200-	merger?	\bigwedge	
	50-	50		$\sigma_0 = 48 \pm 4 \text{ km s}^{-1}$	
	-1.0 -0.5 0.0 0.5 1.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 Spatial Offset (arcsec) Spatial Offset (arcsec)				
Spatial Offset (arcsec) Figure 3. The top panels show ground-based H-band (rest-frame ~6400 Å) and HST FS14W (rest-frame ~3200 Å) imaging on the left and right, respectively, with the MOSFIRE slit overpotent in white. The continuum emission running perpendicular to and out- side of the MOSFIRE All in the II band image likely beings to					
	~5200 A; Rocarmor et al. 2001; imaging on the etb and fight, a galaxy at higher redshift not physically associated with 450.27				
	respectively, with the MOSFIRE and overplotte tidal tails seen in both images angest 450.25 i instanction or is in the early stages of a morper. T show position velocity and position dispersion dis	1 In white. The s undergoing and he bottom panels measured along the MOSFIRE particular the discussion of the two s	ystems are very different. The bot- ity and position-dispersion diagrams slit. The velocity curve looks Kep- is not symmetric in the magnitudes		
	along the MOSFIRE slit. They are disordered i symmetry.	ields showing no of velocities measured on each	side of the galaxy.		
□ High-zでは、MsとSFR (またはsSFR) ではmergerの選別は					
	merger- FRを持つ。 → 難しい?				

□ DSFG (starburst銀河)のMsが間違っている?