Rhythm Shimakawa 1*† , Masayuki Tanaka 1 , Satoshi Kikuta 2 and Masao Hayashi 1

Abstract

This paper reports detections of ${\rm H}\alpha$ emission and stellar continuum out to approximately 30 physical kpc, and ${\rm H}\alpha$ directionality in the outskirts of ${\rm H}\alpha$ -emitting galaxies (${\rm H}\alpha$ emitters) at z=0.4. This research adopts narrow-band selected ${\rm H}\alpha$ emitters at z=0.4 from the emission-line object catalog by Hayashi et al. (2020), which is based on data in the Deep and Ultradeep layers of the Hyper Suprime-Cam Subaru Strategic Program. Deep narrow- and broad-band images of 8625 ${\rm H}\alpha$ emitters across 16.8 ${\rm deg^2}$ enable us to construct deep composite emission-line and continuum images. The stacked images show diffuse ${\rm H}\alpha$ emission (down to $\sim 5\times 10^{-20}$ erg s $^{-1}{\rm cm}^{-2}{\rm arcsec}^{-2}$) and stellar continuum (down to $\sim 5\times 10^{-22}$ erg s $^{-1}{\rm cm}^{-2}{\rm Å}^{-1}{\rm arcsec}^{-2}$), extending beyond 10 kpc at stellar masses $> 10^9~{\rm M}_\odot$, parts of which may originate from stellar halos. Those radial profiles are broadly consistent with each other. In addition, we obtain a dependence of the ${\rm H}\alpha$ emission on the position angle because relatively higher ${\rm H}\alpha$ equivalent width has been detected along the minor-axis towards galaxy disks. While the ${\rm H}\alpha$ directionality could be attributed to biconical outflows, further research with hydrodynamic simulations is highly demanded to pin down the exact cause.

z~0.4銀河外縁部でのHα輝線を初めて検出。

- 銀河外縁部はmerger history等の階層的構造形成の情報を残していると考えられ、outer diskやstellar haloの観測が多くなされてきた。
- 近傍ではSDSS fiberデータによってr~100kpcに渡るHα輝線が検出されているが、遠方ではまだ例が無い。
- HSC-SSP NB921のflux excessデータからz~0.4 Hα(+[NII]) 輝線天体を選択し、stackingによりHα画像とcontinuum画像を作成。
- r>30kpcまで広がる成分を初めて検出。
 - 物理的起源の解明には多色データの情報やシミュレーションと の比較が必要。

Fig2: Hαとcontinuumのradial profile。Mediumとhigh mass sampleではbulge + disk成分だけでは説明できないHαとstellar continuumが同じように外側まで広がっているのを (z-0.4で) 初めて確認。

→outer diskやhaloの星 (hot young starsとold stars) によるものか? Power law slopeは近傍銀河よりもflatterだがS/N的に議論は難しい。 (haloは30kpcを境にしたbroken power lawだという研究もある。)

Fig 3: SFR(Hα) radial profile。下段は全成分に対するpower law成分の寄与。外側ほどpower law成分が卓越している。

Fig 4: PAを揃えてstackingした画像でのHα radial profile。極軸方向に大きなHαを確認。Outflowによるものかもしれないが、haloの寄与も考えうる。

Hα、continuumそれぞれを 3成分でprofile fitting.

arXiv:2112.09843

- bulge成分: gaussian
- disk成分: exponential
- halo成分: power law

Fig. 5. The left and right panels show the composite $H\alpha$ (+[Nii]) and continuum images of shape-aligned $H\alpha$ emitters (see section 4). The white circles depict the radius of 30 ph-kpc. Here they are stretched to a logarithmic scale to improve visibility.

Fig. 2. Radial profiles of surface brightness of $H\alpha$ line emission (blue squares) and normalized stellar continuum (yellow circles) for $H\alpha$ emitters at z=0.4. Less than 2σ detections are represented by the open symbols. The error-bars depict 1σ errors and the light-blue regions are 1σ errors of the curve fitting (see text). From the left to right, figures depict radial profiles for $H\alpha$ emitters with stellar masses of (a) 10^{8-9} , (b) 10^{9-10} , and (c) 10^{10-11} M_{\odot} , respectively. The dotted curves indicate scaled radial profiles of the composite PSF (fitted by a Moffat distribution). The dot-dashed curves are the best-fit Gaussian+exponential radial profiles, which are expected to trace bulge+disk components of the $H\alpha$ emitters.

Fig. 3. (Top panel) Radial profiles of surface SFR densities of ${\rm H}_{\alpha}$ emitters in three stellar mass bins as in figure 1 and table 1 (blue: $10^{\rm 80-9} ({\rm green} \, 1)^{\rm 90-10}$, and red: $10^{\rm 10-11} \, {\rm M}_{\odot}$, respectively). (Bottom panel) Fractions of power law components to the best-fitted radial profiles ($f_{\rm halo}$) in respective stellar mass bins at r > 10 ph-kpc. Non detection regions with $< 2\sigma$ are extrapolated by the best-fitted curves (dashed curves).

Fig. 4. Radial profiles of rest-frame EW of ${\rm H}\alpha$ emission in the directions of ± 30 deg from major-axis (orange symbols) and minor-axis (ourple symbols), respectively. An image illustration of the areas used in the stacking analysis is denoted at the upper left corner. The error-bars and color-filled regions represent 1σ errors. The open symbols indicate 2σ upper limits. The dashed curves depict extrapolated lines of the best-fitted models. The gray region indicates the standard deviations of non-aligned EW $_{\rm H}\alpha$ profile based on 100 composite images with random rotation.