Interacting galaxies on FIRE-2: The connection between enhanced star formation and interstellar gas content

Moreno+2019

2020/7/21

Presenter: K.Kushibiki

Contents

- 1. Introduction
- 2. Methods
 - About FIRE-2
 - Setting of Simulation
- 3. Results
 - Fiducial Run
 - Merger Suite
 - Inter-Regime Transition
- 4. Discussion
 - Emerging Picture
 - Cold Ultra-Dense Gas
 - Connection to Observations
 - Connection to Other Simulations

Abstract

Comprehensive suite of high-resolution (pc-scale), idealized (non-cosmological) galaxy merger simulations (24 runs, stellar mass ratio ~ 2.5:1)

 \rightarrow Connection between interaction-induced SF and the evolution of ISM

'Galaxy-pair period' between first and second pericentric passage with GIZMO & FIRE-2 **ISM classification**: hot, warm, cool, cold-dense (in observation hot, ionized, atomic, molecular)

Results

- Enhance SFR of the pair (~30%)
- Elevate cold-dense gas content (~18%)
- Decrease in warm gas (~11%)
- Negligible change in cool gas (~4% increase)
- Substantial increase in hot gas (~400%)
- Cold ultra-dense regime (cold-dense gas > 1000 cm-3) is elevated significantly (~240%), but only account for ~0.15% of the cold-dense gas

1. Introduction

Galaxy mergers and interactions

Observationally ...

- Enhance SFR (Ellison+2008, 2013; Patton+2013; Knapen+2015)
- Decrease nuclear metallicities (Kewley+2006; Rupke+2010; Montuori+2010; etc.)
- Drive AGN activity (Ellison+2011; Khabiboulline+2014; etc.)

In idealized binary merger simulations ...

- Previous merger simulation suites employ simple model for ISM
 → Treat multi-phase ISM as a single, pressurized fluid (e.g., Springel&Herquist 2003, etc.)
- High resolution simulation resolving GMCs and the structure of the ISM \rightarrow Importance of stellar feedback regulating the ISM structure
- Models that capture the multi-phase structure of the ISM and adopt feedback-regulated SF
 → turbulent pressure, large scale galactic outflow
 but ... computationally expensive

The goal of this paper

- Investigate the evolution of the ISM in different temperature-density regime during the merger
- Build a comprehensive suite of high-resolution simulations with GIZMO & FIRE-2

1. Introduction

Example of simulation

Multi-phase ISM Magenta: T<1000 K

Green: T~10³-10⁴ K Red: T>10⁶ K

Disturbed morphology first, ultimately settling down into a disk galaxy with a bulge Faint shells and streams

Tidal tails and a bridge are more evident in gas

2.1 FIRE-2: The 'Feedback In Realistic Environments' Physics Model (Version 2)

Radiative heating/cooling

- 11 species (free-free, photo-ionization/recombination, Compton, photoelectric, dust-collisional, cosmic ray, molecular, metal-line and fine-structure processes)
- UV background (Faucher-Ginguere+2009)
- Locally-driven photo-heating
- Self-shielding

Star formation

• Self-gravitating, self-shielded gas denser than 1000cm⁻³

Stellar feedback

- SNe (Ia & II) and stellar mass loss (OB and AGB)
 - momentum flux from radiation field, energy momentum, mass & metal injection

SSP model for each star particles

• STARBURST99 with Kroupa IMF

Not include AGN feedback ← Not well understood yet

Not include hot gas at the start of the simulation \leftarrow Lack of observational constraints

2.2 Suite of Galaxy Merger Simulations

Similar to previous simulation by authors (e.g. Moreno+2015), but ...

- Fewer runs (24 vs 75)
- Substantially higher resolution
- New physical model

2.2.1 Isolated Galaxies

Setting up progenitor galaxies

- Mo+ 19989 (procedure in Springel+2005)
- For bulges and DM halos, Hernquist 1990
- Scaling of stellar mass and DM halo mass (Moster+2013)
- Bulge-to-total mass ratio (SDSS result; Mendel+2014)
- Gass mass following Saintonge+2016
- Gas disk length ~10 kpc (diameter ~ 25kpc), in line with observation by Broeils&Rhee 1997
- Set initial gas condition to 10⁵K with solar metallicity

Table 1: Simulation Specifications

Property	Value
Mass resolution (dark matter) Mass resolution (gas) Mass resolution (stars) Highest gas density Highest spatial gas resolution Gravitational softening (collisionless) Gravitational softening (gas)	$\begin{array}{c} 1.9\times 10^5 \ M_{\odot} \\ 1.4\times 10^4 \ M_{\odot} \\ 8.4\times 10^3 \ M_{\odot} \\ 5.8\times 10^5 \ \mathrm{cm^{-3}} \\ 1.1 \ \mathrm{pc} \\ 0.01 \ \mathrm{kpc} \\ 0.001 \ \mathrm{kpc} \end{array}$

Table 2:	Properties	of	progenitor	aalaxies
		<u> </u>	progeneer	genentee

Property	Primary	Secondary
$M_{ m halo}$ $M_{ m stellar}$ $M_{ m bulge}$ $M_{ m gas}$ $\lambda_{ m halo}$ $R_{ m disk}$ $h_{ m disk~(m bulge)}/R_{ m disk}$	$\begin{array}{c} 7.5\times10^{11}M_{\odot}\\ 3.0\times10^{10}M_{\odot}\\ 2.5\times10^9M_{\odot}\\ 8.0\times10^9M_{\odot}\\ 0.05\\ 2.85\ \mathrm{kpc}\\ 0.14\ (0.13) \end{array}$	$\begin{array}{c} 3.5 \times 10^{11} M_{\odot} \\ 1.2 \times 10^{10} M_{\odot} \\ 7.0 \times 10^8 M_{\odot} \\ 7.0 \times 10^9 M_{\odot} \\ 0.05 \\ 1.91 \ \mathrm{kpc} \\ 0.2 \ (0.136) \end{array}$

2.2.2 The Fiducial Run

Nearly prograde orbit with small impact parameter (~ 7kpc) and highly eccentric orbit

Note: Make t=0 at first pericenter

2.2.3 Galaxy Merger Simulations

- Effects by variations in orbital merging configuration
- 24 galaxy merger simulations split into 3 groups
 - Prograde
 - Polar
 - Retrograde

	Prograde ("e")	Polar ("f")	Retrograde ("k")
Primary			
ϕ_1	60°	60°	-30°
θ_1	30°	60°	-109°
Secondary			
ϕ_2	45°	0°	-30°
θ_2	-30°	150°	71°

Fig. 1 of Moreno+2015

2.2.3 Cont'd

Don't fine-tune the orbital parameters

- → Certain properties at first pericentric passage (Bottom of Fig. 3)
- → Drop 3 orbit with merging times > 5Gyr
- 24 mergers
- = (3orientations
 - x 3 first-pericentric separations
 - x 3 relative velocities at first pericentric passage)
 - (3 mergers with merging time > 5Gyr)

Range of separations and merging timescales

- Separation as high as 300kpc ~ Observation
- At large separations, galaxies slow down \rightarrow Spend long time

2.3 ISM Temperature-Density Regimes

Four regime

- Hot: A result of feedback heating \Leftrightarrow Hot gas in observation
- Warm: Dominated by warm-ionized gas (bright band above 8000K) ⇔lonized gas

Table 4

● Cool, Cold-dense: Diffuse valley, Clouds. Mixture of atomic and molecular gas
 ⇔ atomic & molecular gas

Not employ sophisticated models of ionized, atomic and molecular gas

→ Currently refining (Orr+2018, Lakhlani+in prep)

ISM regimes	Temperature-density demarcations
warm	$(T < 10^6 \mathrm{K}, n < 0.1 \mathrm{cm^{-3}})$ & (8000 K < T < 10 ⁶ K, n > 0.1 cm ⁻³)
cool	$(T < 8000 \text{ K}, 0.1 \text{ cm}^{-3} < n < 10 \text{ cm}^{-3})$ & (300 K < T < 8000 K, n < 0.1 cm^{-3})
cold-dense	$(T < 300 \mathrm{K}, n > 10 \mathrm{cm}^{-3})$
hot	$(T > 10^6 \mathrm{K})$
cold moderately-dense cold ultra-dense	$\begin{array}{l} (T < 300{\rm K}, 10 < n < 1000{\rm cm}^{-3}) \\ (T < 300{\rm K}, n > 1000{\rm cm}^{-3}) \end{array}$

2.4 Caveats and Limitations

- Without employing full radiative transfer calculation coupled with chemical network solvers
- Lack of feedback from SMBH accretion
- Not include hot gas atmospheres at the start of simulation (effect of hot gas cooling)
- Lack of cosmological context

Some solutions for above disadvantage (especially for environmental factors)

- Avoid long-lived galaxy-galaxy interactions
 - Effect of gas accretion from cosmic web and third galaxies
- Comparing merging systems against isolated 'control' galaxies \rightarrow Reduce the effects caused by other environmental factors

3.1 Fiducial Run: Star Formation

Comparison with 'control' isolated counter part

SFR enhancement:

(SFR in the interacting galxies)

(Sum of the SFR in the two isolated galaxies)

Note: calculate for the entire galaxy-pair system

Interaction elevate SFR in galaxies

- Sudden spike at the first pericentric passage
- Prolonged period of enhancement (by factors of ~2-3) between t=0 – 1.3 Gyr
- Sudden rise at second pericentric passage
 - Half of the runs exhibit
 - Depending on internal properties of the colliding galaxies and the geometry of collision

3.2 Fiducial Run: The Structure of the ISM

Warm gas

- Most of gas is in this regime
- Gradually depleted in both isolated and interacting
- Depletion is magnified by interactions

Cool gas

- Depleted in both isolated and interacting
- In the interacting, a brief boost, followed by a drop and long-term steady recovery

Cold-dense gas

- Depletion over long timescales
- A brief and sudden spike followed by a mild and brief suppression. Soon after, replenished

Hot gas

- At both pericentric passage and coalescence, hot gas increase dramatically \leftarrow shock heating
- Excess appears before the actual pericentric passage ← outer regions
- Excess of hot gas is maintained during pair-period and doubles t~1.3-1.9 Gyr

3.3 Merger Suite: Star Formation

SFR enhancement only for galaxy-pair period

- Enhance across merger suite
- Level of enhancement and the scatter diminished with time

Note: Combine several mergers with different time duration

3.3 Merger Suite: The structure of the ISM

Warm gas

• Suppressed (Intensity and duration varies from merger to merger)

Cool gas

- Suppression followed by a slow and steady recovery $\mathbb{I}_{2^{n+10}}$
- Mild excess t > 1Gyr

Cold-dense gas

• Excess at all time with brief dip at first

Hot gas

• Highest levels of enhancement, especially at first pericentric passage

3.5 Merger Suite: Star Formation and its Connection to the ISM

Correlation between SFR enhancement and gas mass enhancement

- No correlation with warm and hot gas
- Weak anti-correlation with cool gas
- Weak correlation with cold-dense gas

Note: Bimodality of the warm gas

- High mass enhancement peak: Retrograde mergers
- Low mass enhancement peak: Prograde and polar mergers
- → spin-orbit orientation governs the effectiveness of warm gas depletion

(Detail study in a future paper)

3.6 Inter-Regime Transition Rate

How the various gas regime feed and drain one another on the fiducial case

Mass transition rates (Between regime α and regime β)

$$\frac{\mathrm{d}M_{\alpha}(t)}{\mathrm{d}t} = \sum_{\beta \neq \alpha} \mathcal{R}_{\alpha \leftrightarrow \beta}(t), \qquad \mathcal{R}_{\alpha \leftrightarrow \beta}(t) = R_{\alpha \rightarrow \beta}(t) - R_{\beta \rightarrow \alpha}(t), \qquad R_{\alpha \rightarrow \beta}(t) = \frac{\mathrm{d}M(t)}{\mathrm{d}t}\Big|_{\alpha \rightarrow \beta}$$

Employing particle IDs and tracing the state of it

Few comment for all the results

- In the figures from next slide, they only display *net* transition $R_{\alpha \leftrightarrow \beta}$, not $R_{\alpha \rightarrow \beta}$
- Simulation show that inter-regime transition tend to favor a preferred direction
- The main effect caused by encounters is the amplification of net transition rates: "Interacting vs Isolated"

3.6 Cont'd

Warm gas (Fig. 11)

- "Gain by cold-dense gas → warm gas" vs "Loss by warm gas → cool gas" → Overall slow depletion of warm gas
- Deviation by halting (reversing) the loss of warm gas possibly due to intense stellar feedback (e.g. t~0.3 Gyr)

Cool gas (Fig 12)

- "Gain by warm gas → cool gas" vs "Loss by cool gas → cold-dense gas" → Overall slow depletion of cool gas
- Deviation by ...
 - High influx from warm gas (e.g. t=0 Gyr)
 - Halting (reversing) transformation from warm gas

3.6 Cont'd

Cold-dense gas (Fig. 13)

- "Gain by cool gas → cold-dense gas" vs "Loss by cold-dense gas → warm gas" vs "Consumption by cold-dense gas → stars" → Overall slow depletion of cold-dense gas
- Deviation by a high net influx from both cool and warm gas (e.g. t~0, 0.4 Gyr)

Hot gas (Fig 14)

- Hot gas "follows" warm gas
- Exception at t~0.4 Gyr: Time derivative of hot gas recover to zero following net conversion from cold-dense and cool gas
 ← Enhanced star formation ?
- Note: Hot gas budget is significantly smaller than others

4. Disucussion

4.1 An Emerging Picture

The role of interactions

- Amplifying warm gas depletion
- Amplifying cool gas depletion, especially early
- Enhancing cold-dense gas reservoir
- ← Accelerate, halt, or reverse the direction of transitions

4.2 Cold Ultra-Dense Gas

Cold moderately-dense gas: $n = 10 - 1000 \text{ cm}^{-3}$ Cold ultra-dense gas: $n > 1000 \text{ cm}^{-3}$ (Sometimes close to resolution limit)

Fraction in the cold-dense gas

• Cold ultra-dense gas: at most a few %

Interaction-induced mass excesses

- Cold-dense, Cold moderately-dense: x ~1-2
- Cold ultra-dense –dense: x ~10

4. Disucussion

4.2 Cont'd

For the cold ultra-dense gas across entire simulations

- Only ~0.15% of cold-dense gas on average
- Interaction enhance cold ultra-dense gas by factor of ~3.41 on average
- Only mild correlation with SFR enhancement
 - ← Exploring the high-density tail of the gas density function due to the resolution of the simulation

4.3 Connection to Observations

Cool gas: median ~ 4% increase (Fig 9)

- HI is the standard tracer
- Conflicting indications from observations
 - No difference in merging and control (e.g. Zuo+2018)
 - Enhanced gas fraction (e.g. Ellison+2018)
- Observational challenges
 - Single dish telescopes: large beams \rightarrow Source blending
 - Interferometers: Cannot do statistical studies

4. Disucussion

4.3 Cont'd

Cold-dense gas: median ~18% increase

Molecular gas with CO emissions (e.g. Braine&Combes 1993, Combes+1994, etc.)

- Enhancement of CO luminosity
- Correlation of CO luminosities and FIR luminosities
- → "Enhancement in molecular gas ⇒ Enhancement of SF" in interacting system

Caveat for comparison between simulation and observation

- α_{CO} in observation
- Radiative-transfer calculations on the simulation-side

Cold-dense gas enhancement vs SFR enhancement

Cold-dense gas reservoir remains even when SFR enhancement diminish \rightarrow Cold-dense gas content is not exhausted after elevation of SF

Cold ultra-dense gas: ~0.15% of the cold gas

• $L_{CO(3-2)}/L_{CO(1-0)}$ and $L_{HCN}/L_{CO(1-0)}$ have potential to constrain

4. Discussion

4.3 Cont'd

Hot gas: median ~ 400%

Very few observations

- Henriksen & Cousineau 1999: At fixed B-band luminosity, X-ray luminosity in spiral-spiral pair is enhanced
- Casasola+2004: X-ray luminosities from diffuse gas is higher in interacting system
- Smith+2018: For galaxies with SFR > $1M_{\odot}/yr$, $L_{x}(gas)/SFR$ is not correlated with SFR or interacting stage

4.4 Connection to Other Simulations

- Di Matteo+2008: Modest SFR enhancement in simulated low-redshift major merger
- Cox+2008: Amplitude of the SFR enhancement at coalescence decrease sharply with increasing mass ratio.
 Even for equal-mass, SFR increase in pre-coalescence < factor of a few
- Fensch+2017: Mergers are less efficient at high redshift owing to its higher gas fraction
- Teyssier+2010: Sufficiently high resolution (12pc, $4x10^4M_{\odot}$)
 - Enhanced fragmentation into cold clouds \rightarrow SFR enhancement
 - Gas density PDF shift to higher densities in the interactions