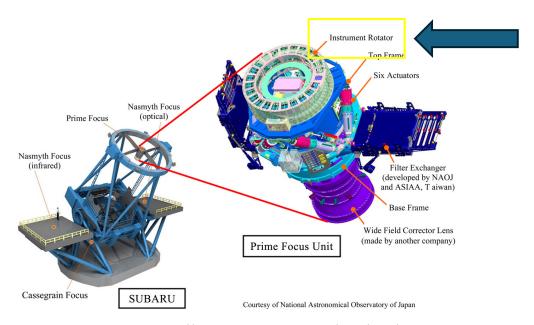
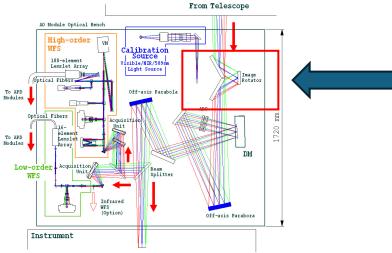

2 Explain the difference between an equatorial mount and an alt-azimuth mount. Give an advantage and disadvantage of each.

	Advantage	Disadvantage
Equatorial mount (赤道儀)	 Can follow object in sky w/ a single-axis (RA/Polar) movement → Easy to track star No field rotation → Better for astrophotography esp. for long exposure 	 Need polar alignment for accurate tracking Complex structure → Heavy (, less portable)
Alt-azimuth mount (経緯台)	 Simple structure →Light weight, more stable (, portable) →Used for modern (large) telescope 	 Field rotation → Need counter rotating instrument or rotating an optical compensator e.g. K-mirror · dead zone near the zenith Complex tracking → Need computer control

$$\omega = \Omega \cos A \frac{\cos \phi}{\sin z}$$


z close to 0° (zenith) ω becomes infinitely fast

Equatorial mount



65 cm refractor telescope in Mitaka

Alt-Az mount

https://www.mitsubishielectric.com/news/2013/0731-b_print.html

https://www.naoj.org/Observing/Instruments/AO/system.html

Gautier

· Photoelectric Meridian Circle

Transit mounts in Mitaka

· Repsold

- 8 Calculate the field of view covered by a mosaic of 6 × 5 CCDs with no overlaps if each CCD has 2,048 × 2,048 pixels mapped to 0.2" on the sky. Assuming that each exposure is 20 minutes, how long would it take to cover an area of sky of 10° × 10°? How long would it take to cover most of one hemisphere of sky?
 - FOV_CCD = 2048 pix \times 0.2 as/pix = 409.6 as \sim 0.1138 deg
 - Width of mosaic = $6 \times 0.1138 \text{ deg} = 0.6827 \text{ deg}$
 - Height of mosaic = $5 \times 0.1138 \text{ deg} = 0.5689 \text{ deg}$
 - $(10/0.6827) \times (10/0.5689) \sim 15 \times 18 = 270$
- \rightarrow Time to cover a 10 deg \times 10 deg sky area \sim 270 \times 20 min = 5400 min = 90 hr
- One hemisphere = 2 pi $(180/pi)^2 deg^2 = 20626 deg^2$
- Mosaic size projected on sky = $0.6827 \times 0.5689 = 0.3883 \text{ deg}^2$
- Time to cover most of one hemisphere $= 20626 / 0.3883 \times 20 \text{ min} = 1062000 \text{ min} \sim 738 \text{ day} \sim 2 \text{ year}$